| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fpwwe2.1 |
|- W = { <. x , r >. | ( ( x C_ A /\ r C_ ( x X. x ) ) /\ ( r We x /\ A. y e. x [. ( `' r " { y } ) / u ]. ( u F ( r i^i ( u X. u ) ) ) = y ) ) } |
| 2 |
|
simpl |
|- ( ( x = a /\ r = s ) -> x = a ) |
| 3 |
2
|
sseq1d |
|- ( ( x = a /\ r = s ) -> ( x C_ A <-> a C_ A ) ) |
| 4 |
|
simpr |
|- ( ( x = a /\ r = s ) -> r = s ) |
| 5 |
2
|
sqxpeqd |
|- ( ( x = a /\ r = s ) -> ( x X. x ) = ( a X. a ) ) |
| 6 |
4 5
|
sseq12d |
|- ( ( x = a /\ r = s ) -> ( r C_ ( x X. x ) <-> s C_ ( a X. a ) ) ) |
| 7 |
3 6
|
anbi12d |
|- ( ( x = a /\ r = s ) -> ( ( x C_ A /\ r C_ ( x X. x ) ) <-> ( a C_ A /\ s C_ ( a X. a ) ) ) ) |
| 8 |
4 2
|
weeq12d |
|- ( ( x = a /\ r = s ) -> ( r We x <-> s We a ) ) |
| 9 |
|
id |
|- ( u = v -> u = v ) |
| 10 |
9
|
sqxpeqd |
|- ( u = v -> ( u X. u ) = ( v X. v ) ) |
| 11 |
10
|
ineq2d |
|- ( u = v -> ( r i^i ( u X. u ) ) = ( r i^i ( v X. v ) ) ) |
| 12 |
9 11
|
oveq12d |
|- ( u = v -> ( u F ( r i^i ( u X. u ) ) ) = ( v F ( r i^i ( v X. v ) ) ) ) |
| 13 |
12
|
eqeq1d |
|- ( u = v -> ( ( u F ( r i^i ( u X. u ) ) ) = y <-> ( v F ( r i^i ( v X. v ) ) ) = y ) ) |
| 14 |
13
|
cbvsbcvw |
|- ( [. ( `' r " { y } ) / u ]. ( u F ( r i^i ( u X. u ) ) ) = y <-> [. ( `' r " { y } ) / v ]. ( v F ( r i^i ( v X. v ) ) ) = y ) |
| 15 |
|
sneq |
|- ( y = z -> { y } = { z } ) |
| 16 |
15
|
imaeq2d |
|- ( y = z -> ( `' r " { y } ) = ( `' r " { z } ) ) |
| 17 |
|
eqeq2 |
|- ( y = z -> ( ( v F ( r i^i ( v X. v ) ) ) = y <-> ( v F ( r i^i ( v X. v ) ) ) = z ) ) |
| 18 |
16 17
|
sbceqbid |
|- ( y = z -> ( [. ( `' r " { y } ) / v ]. ( v F ( r i^i ( v X. v ) ) ) = y <-> [. ( `' r " { z } ) / v ]. ( v F ( r i^i ( v X. v ) ) ) = z ) ) |
| 19 |
14 18
|
bitrid |
|- ( y = z -> ( [. ( `' r " { y } ) / u ]. ( u F ( r i^i ( u X. u ) ) ) = y <-> [. ( `' r " { z } ) / v ]. ( v F ( r i^i ( v X. v ) ) ) = z ) ) |
| 20 |
19
|
cbvralvw |
|- ( A. y e. x [. ( `' r " { y } ) / u ]. ( u F ( r i^i ( u X. u ) ) ) = y <-> A. z e. x [. ( `' r " { z } ) / v ]. ( v F ( r i^i ( v X. v ) ) ) = z ) |
| 21 |
4
|
cnveqd |
|- ( ( x = a /\ r = s ) -> `' r = `' s ) |
| 22 |
21
|
imaeq1d |
|- ( ( x = a /\ r = s ) -> ( `' r " { z } ) = ( `' s " { z } ) ) |
| 23 |
4
|
ineq1d |
|- ( ( x = a /\ r = s ) -> ( r i^i ( v X. v ) ) = ( s i^i ( v X. v ) ) ) |
| 24 |
23
|
oveq2d |
|- ( ( x = a /\ r = s ) -> ( v F ( r i^i ( v X. v ) ) ) = ( v F ( s i^i ( v X. v ) ) ) ) |
| 25 |
24
|
eqeq1d |
|- ( ( x = a /\ r = s ) -> ( ( v F ( r i^i ( v X. v ) ) ) = z <-> ( v F ( s i^i ( v X. v ) ) ) = z ) ) |
| 26 |
22 25
|
sbceqbid |
|- ( ( x = a /\ r = s ) -> ( [. ( `' r " { z } ) / v ]. ( v F ( r i^i ( v X. v ) ) ) = z <-> [. ( `' s " { z } ) / v ]. ( v F ( s i^i ( v X. v ) ) ) = z ) ) |
| 27 |
2 26
|
raleqbidv |
|- ( ( x = a /\ r = s ) -> ( A. z e. x [. ( `' r " { z } ) / v ]. ( v F ( r i^i ( v X. v ) ) ) = z <-> A. z e. a [. ( `' s " { z } ) / v ]. ( v F ( s i^i ( v X. v ) ) ) = z ) ) |
| 28 |
20 27
|
bitrid |
|- ( ( x = a /\ r = s ) -> ( A. y e. x [. ( `' r " { y } ) / u ]. ( u F ( r i^i ( u X. u ) ) ) = y <-> A. z e. a [. ( `' s " { z } ) / v ]. ( v F ( s i^i ( v X. v ) ) ) = z ) ) |
| 29 |
8 28
|
anbi12d |
|- ( ( x = a /\ r = s ) -> ( ( r We x /\ A. y e. x [. ( `' r " { y } ) / u ]. ( u F ( r i^i ( u X. u ) ) ) = y ) <-> ( s We a /\ A. z e. a [. ( `' s " { z } ) / v ]. ( v F ( s i^i ( v X. v ) ) ) = z ) ) ) |
| 30 |
7 29
|
anbi12d |
|- ( ( x = a /\ r = s ) -> ( ( ( x C_ A /\ r C_ ( x X. x ) ) /\ ( r We x /\ A. y e. x [. ( `' r " { y } ) / u ]. ( u F ( r i^i ( u X. u ) ) ) = y ) ) <-> ( ( a C_ A /\ s C_ ( a X. a ) ) /\ ( s We a /\ A. z e. a [. ( `' s " { z } ) / v ]. ( v F ( s i^i ( v X. v ) ) ) = z ) ) ) ) |
| 31 |
30
|
cbvopabv |
|- { <. x , r >. | ( ( x C_ A /\ r C_ ( x X. x ) ) /\ ( r We x /\ A. y e. x [. ( `' r " { y } ) / u ]. ( u F ( r i^i ( u X. u ) ) ) = y ) ) } = { <. a , s >. | ( ( a C_ A /\ s C_ ( a X. a ) ) /\ ( s We a /\ A. z e. a [. ( `' s " { z } ) / v ]. ( v F ( s i^i ( v X. v ) ) ) = z ) ) } |
| 32 |
1 31
|
eqtri |
|- W = { <. a , s >. | ( ( a C_ A /\ s C_ ( a X. a ) ) /\ ( s We a /\ A. z e. a [. ( `' s " { z } ) / v ]. ( v F ( s i^i ( v X. v ) ) ) = z ) ) } |