| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fpwwe2.1 | 
							 |-  W = { <. x , r >. | ( ( x C_ A /\ r C_ ( x X. x ) ) /\ ( r We x /\ A. y e. x [. ( `' r " { y } ) / u ]. ( u F ( r i^i ( u X. u ) ) ) = y ) ) } | 
						
						
							| 2 | 
							
								
							 | 
							fpwwe2.2 | 
							 |-  ( ph -> A e. V )  | 
						
						
							| 3 | 
							
								
							 | 
							fpwwe2.3 | 
							 |-  ( ( ph /\ ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) ) -> ( x F r ) e. A )  | 
						
						
							| 4 | 
							
								
							 | 
							fpwwe2.4 | 
							 |-  X = U. dom W  | 
						
						
							| 5 | 
							
								1
							 | 
							relopabiv | 
							 |-  Rel W  | 
						
						
							| 6 | 
							
								5
							 | 
							a1i | 
							 |-  ( ph -> Rel W )  | 
						
						
							| 7 | 
							
								
							 | 
							simprr | 
							 |-  ( ( ( ph /\ ( w W s /\ w W t ) ) /\ ( w C_ w /\ s = ( t i^i ( w X. w ) ) ) ) -> s = ( t i^i ( w X. w ) ) )  | 
						
						
							| 8 | 
							
								1 2
							 | 
							fpwwe2lem2 | 
							 |-  ( ph -> ( w W t <-> ( ( w C_ A /\ t C_ ( w X. w ) ) /\ ( t We w /\ A. y e. w [. ( `' t " { y } ) / u ]. ( u F ( t i^i ( u X. u ) ) ) = y ) ) ) ) | 
						
						
							| 9 | 
							
								8
							 | 
							simprbda | 
							 |-  ( ( ph /\ w W t ) -> ( w C_ A /\ t C_ ( w X. w ) ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							simprd | 
							 |-  ( ( ph /\ w W t ) -> t C_ ( w X. w ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							adantrl | 
							 |-  ( ( ph /\ ( w W s /\ w W t ) ) -> t C_ ( w X. w ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							adantr | 
							 |-  ( ( ( ph /\ ( w W s /\ w W t ) ) /\ ( w C_ w /\ s = ( t i^i ( w X. w ) ) ) ) -> t C_ ( w X. w ) )  | 
						
						
							| 13 | 
							
								
							 | 
							dfss2 | 
							 |-  ( t C_ ( w X. w ) <-> ( t i^i ( w X. w ) ) = t )  | 
						
						
							| 14 | 
							
								12 13
							 | 
							sylib | 
							 |-  ( ( ( ph /\ ( w W s /\ w W t ) ) /\ ( w C_ w /\ s = ( t i^i ( w X. w ) ) ) ) -> ( t i^i ( w X. w ) ) = t )  | 
						
						
							| 15 | 
							
								7 14
							 | 
							eqtrd | 
							 |-  ( ( ( ph /\ ( w W s /\ w W t ) ) /\ ( w C_ w /\ s = ( t i^i ( w X. w ) ) ) ) -> s = t )  | 
						
						
							| 16 | 
							
								
							 | 
							simprr | 
							 |-  ( ( ( ph /\ ( w W s /\ w W t ) ) /\ ( w C_ w /\ t = ( s i^i ( w X. w ) ) ) ) -> t = ( s i^i ( w X. w ) ) )  | 
						
						
							| 17 | 
							
								1 2
							 | 
							fpwwe2lem2 | 
							 |-  ( ph -> ( w W s <-> ( ( w C_ A /\ s C_ ( w X. w ) ) /\ ( s We w /\ A. y e. w [. ( `' s " { y } ) / u ]. ( u F ( s i^i ( u X. u ) ) ) = y ) ) ) ) | 
						
						
							| 18 | 
							
								17
							 | 
							simprbda | 
							 |-  ( ( ph /\ w W s ) -> ( w C_ A /\ s C_ ( w X. w ) ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							simprd | 
							 |-  ( ( ph /\ w W s ) -> s C_ ( w X. w ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							adantrr | 
							 |-  ( ( ph /\ ( w W s /\ w W t ) ) -> s C_ ( w X. w ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							adantr | 
							 |-  ( ( ( ph /\ ( w W s /\ w W t ) ) /\ ( w C_ w /\ t = ( s i^i ( w X. w ) ) ) ) -> s C_ ( w X. w ) )  | 
						
						
							| 22 | 
							
								
							 | 
							dfss2 | 
							 |-  ( s C_ ( w X. w ) <-> ( s i^i ( w X. w ) ) = s )  | 
						
						
							| 23 | 
							
								21 22
							 | 
							sylib | 
							 |-  ( ( ( ph /\ ( w W s /\ w W t ) ) /\ ( w C_ w /\ t = ( s i^i ( w X. w ) ) ) ) -> ( s i^i ( w X. w ) ) = s )  | 
						
						
							| 24 | 
							
								16 23
							 | 
							eqtr2d | 
							 |-  ( ( ( ph /\ ( w W s /\ w W t ) ) /\ ( w C_ w /\ t = ( s i^i ( w X. w ) ) ) ) -> s = t )  | 
						
						
							| 25 | 
							
								2
							 | 
							adantr | 
							 |-  ( ( ph /\ ( w W s /\ w W t ) ) -> A e. V )  | 
						
						
							| 26 | 
							
								3
							 | 
							adantlr | 
							 |-  ( ( ( ph /\ ( w W s /\ w W t ) ) /\ ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) ) -> ( x F r ) e. A )  | 
						
						
							| 27 | 
							
								
							 | 
							simprl | 
							 |-  ( ( ph /\ ( w W s /\ w W t ) ) -> w W s )  | 
						
						
							| 28 | 
							
								
							 | 
							simprr | 
							 |-  ( ( ph /\ ( w W s /\ w W t ) ) -> w W t )  | 
						
						
							| 29 | 
							
								1 25 26 27 28
							 | 
							fpwwe2lem9 | 
							 |-  ( ( ph /\ ( w W s /\ w W t ) ) -> ( ( w C_ w /\ s = ( t i^i ( w X. w ) ) ) \/ ( w C_ w /\ t = ( s i^i ( w X. w ) ) ) ) )  | 
						
						
							| 30 | 
							
								15 24 29
							 | 
							mpjaodan | 
							 |-  ( ( ph /\ ( w W s /\ w W t ) ) -> s = t )  | 
						
						
							| 31 | 
							
								30
							 | 
							ex | 
							 |-  ( ph -> ( ( w W s /\ w W t ) -> s = t ) )  | 
						
						
							| 32 | 
							
								31
							 | 
							alrimiv | 
							 |-  ( ph -> A. t ( ( w W s /\ w W t ) -> s = t ) )  | 
						
						
							| 33 | 
							
								32
							 | 
							alrimivv | 
							 |-  ( ph -> A. w A. s A. t ( ( w W s /\ w W t ) -> s = t ) )  | 
						
						
							| 34 | 
							
								
							 | 
							dffun2 | 
							 |-  ( Fun W <-> ( Rel W /\ A. w A. s A. t ( ( w W s /\ w W t ) -> s = t ) ) )  | 
						
						
							| 35 | 
							
								6 33 34
							 | 
							sylanbrc | 
							 |-  ( ph -> Fun W )  | 
						
						
							| 36 | 
							
								35
							 | 
							funfnd | 
							 |-  ( ph -> W Fn dom W )  | 
						
						
							| 37 | 
							
								
							 | 
							vex | 
							 |-  s e. _V  | 
						
						
							| 38 | 
							
								37
							 | 
							elrn | 
							 |-  ( s e. ran W <-> E. w w W s )  | 
						
						
							| 39 | 
							
								5
							 | 
							releldmi | 
							 |-  ( w W s -> w e. dom W )  | 
						
						
							| 40 | 
							
								39
							 | 
							adantl | 
							 |-  ( ( ph /\ w W s ) -> w e. dom W )  | 
						
						
							| 41 | 
							
								
							 | 
							elssuni | 
							 |-  ( w e. dom W -> w C_ U. dom W )  | 
						
						
							| 42 | 
							
								40 41
							 | 
							syl | 
							 |-  ( ( ph /\ w W s ) -> w C_ U. dom W )  | 
						
						
							| 43 | 
							
								42 4
							 | 
							sseqtrrdi | 
							 |-  ( ( ph /\ w W s ) -> w C_ X )  | 
						
						
							| 44 | 
							
								
							 | 
							xpss12 | 
							 |-  ( ( w C_ X /\ w C_ X ) -> ( w X. w ) C_ ( X X. X ) )  | 
						
						
							| 45 | 
							
								43 43 44
							 | 
							syl2anc | 
							 |-  ( ( ph /\ w W s ) -> ( w X. w ) C_ ( X X. X ) )  | 
						
						
							| 46 | 
							
								19 45
							 | 
							sstrd | 
							 |-  ( ( ph /\ w W s ) -> s C_ ( X X. X ) )  | 
						
						
							| 47 | 
							
								46
							 | 
							ex | 
							 |-  ( ph -> ( w W s -> s C_ ( X X. X ) ) )  | 
						
						
							| 48 | 
							
								
							 | 
							velpw | 
							 |-  ( s e. ~P ( X X. X ) <-> s C_ ( X X. X ) )  | 
						
						
							| 49 | 
							
								47 48
							 | 
							imbitrrdi | 
							 |-  ( ph -> ( w W s -> s e. ~P ( X X. X ) ) )  | 
						
						
							| 50 | 
							
								49
							 | 
							exlimdv | 
							 |-  ( ph -> ( E. w w W s -> s e. ~P ( X X. X ) ) )  | 
						
						
							| 51 | 
							
								38 50
							 | 
							biimtrid | 
							 |-  ( ph -> ( s e. ran W -> s e. ~P ( X X. X ) ) )  | 
						
						
							| 52 | 
							
								51
							 | 
							ssrdv | 
							 |-  ( ph -> ran W C_ ~P ( X X. X ) )  | 
						
						
							| 53 | 
							
								
							 | 
							df-f | 
							 |-  ( W : dom W --> ~P ( X X. X ) <-> ( W Fn dom W /\ ran W C_ ~P ( X X. X ) ) )  | 
						
						
							| 54 | 
							
								36 52 53
							 | 
							sylanbrc | 
							 |-  ( ph -> W : dom W --> ~P ( X X. X ) )  |