Step |
Hyp |
Ref |
Expression |
1 |
|
fpwwe2.1 |
|- W = { <. x , r >. | ( ( x C_ A /\ r C_ ( x X. x ) ) /\ ( r We x /\ A. y e. x [. ( `' r " { y } ) / u ]. ( u F ( r i^i ( u X. u ) ) ) = y ) ) } |
2 |
|
fpwwe2.2 |
|- ( ph -> A e. V ) |
3 |
1
|
relopabiv |
|- Rel W |
4 |
3
|
a1i |
|- ( ph -> Rel W ) |
5 |
|
brrelex12 |
|- ( ( Rel W /\ X W R ) -> ( X e. _V /\ R e. _V ) ) |
6 |
4 5
|
sylan |
|- ( ( ph /\ X W R ) -> ( X e. _V /\ R e. _V ) ) |
7 |
2
|
adantr |
|- ( ( ph /\ ( ( X C_ A /\ R C_ ( X X. X ) ) /\ ( R We X /\ A. y e. X [. ( `' R " { y } ) / u ]. ( u F ( R i^i ( u X. u ) ) ) = y ) ) ) -> A e. V ) |
8 |
|
simprll |
|- ( ( ph /\ ( ( X C_ A /\ R C_ ( X X. X ) ) /\ ( R We X /\ A. y e. X [. ( `' R " { y } ) / u ]. ( u F ( R i^i ( u X. u ) ) ) = y ) ) ) -> X C_ A ) |
9 |
7 8
|
ssexd |
|- ( ( ph /\ ( ( X C_ A /\ R C_ ( X X. X ) ) /\ ( R We X /\ A. y e. X [. ( `' R " { y } ) / u ]. ( u F ( R i^i ( u X. u ) ) ) = y ) ) ) -> X e. _V ) |
10 |
9 9
|
xpexd |
|- ( ( ph /\ ( ( X C_ A /\ R C_ ( X X. X ) ) /\ ( R We X /\ A. y e. X [. ( `' R " { y } ) / u ]. ( u F ( R i^i ( u X. u ) ) ) = y ) ) ) -> ( X X. X ) e. _V ) |
11 |
|
simprlr |
|- ( ( ph /\ ( ( X C_ A /\ R C_ ( X X. X ) ) /\ ( R We X /\ A. y e. X [. ( `' R " { y } ) / u ]. ( u F ( R i^i ( u X. u ) ) ) = y ) ) ) -> R C_ ( X X. X ) ) |
12 |
10 11
|
ssexd |
|- ( ( ph /\ ( ( X C_ A /\ R C_ ( X X. X ) ) /\ ( R We X /\ A. y e. X [. ( `' R " { y } ) / u ]. ( u F ( R i^i ( u X. u ) ) ) = y ) ) ) -> R e. _V ) |
13 |
9 12
|
jca |
|- ( ( ph /\ ( ( X C_ A /\ R C_ ( X X. X ) ) /\ ( R We X /\ A. y e. X [. ( `' R " { y } ) / u ]. ( u F ( R i^i ( u X. u ) ) ) = y ) ) ) -> ( X e. _V /\ R e. _V ) ) |
14 |
|
simpl |
|- ( ( x = X /\ r = R ) -> x = X ) |
15 |
14
|
sseq1d |
|- ( ( x = X /\ r = R ) -> ( x C_ A <-> X C_ A ) ) |
16 |
|
simpr |
|- ( ( x = X /\ r = R ) -> r = R ) |
17 |
14
|
sqxpeqd |
|- ( ( x = X /\ r = R ) -> ( x X. x ) = ( X X. X ) ) |
18 |
16 17
|
sseq12d |
|- ( ( x = X /\ r = R ) -> ( r C_ ( x X. x ) <-> R C_ ( X X. X ) ) ) |
19 |
15 18
|
anbi12d |
|- ( ( x = X /\ r = R ) -> ( ( x C_ A /\ r C_ ( x X. x ) ) <-> ( X C_ A /\ R C_ ( X X. X ) ) ) ) |
20 |
|
weeq2 |
|- ( x = X -> ( r We x <-> r We X ) ) |
21 |
|
weeq1 |
|- ( r = R -> ( r We X <-> R We X ) ) |
22 |
20 21
|
sylan9bb |
|- ( ( x = X /\ r = R ) -> ( r We x <-> R We X ) ) |
23 |
16
|
cnveqd |
|- ( ( x = X /\ r = R ) -> `' r = `' R ) |
24 |
23
|
imaeq1d |
|- ( ( x = X /\ r = R ) -> ( `' r " { y } ) = ( `' R " { y } ) ) |
25 |
16
|
ineq1d |
|- ( ( x = X /\ r = R ) -> ( r i^i ( u X. u ) ) = ( R i^i ( u X. u ) ) ) |
26 |
25
|
oveq2d |
|- ( ( x = X /\ r = R ) -> ( u F ( r i^i ( u X. u ) ) ) = ( u F ( R i^i ( u X. u ) ) ) ) |
27 |
26
|
eqeq1d |
|- ( ( x = X /\ r = R ) -> ( ( u F ( r i^i ( u X. u ) ) ) = y <-> ( u F ( R i^i ( u X. u ) ) ) = y ) ) |
28 |
24 27
|
sbceqbid |
|- ( ( x = X /\ r = R ) -> ( [. ( `' r " { y } ) / u ]. ( u F ( r i^i ( u X. u ) ) ) = y <-> [. ( `' R " { y } ) / u ]. ( u F ( R i^i ( u X. u ) ) ) = y ) ) |
29 |
14 28
|
raleqbidv |
|- ( ( x = X /\ r = R ) -> ( A. y e. x [. ( `' r " { y } ) / u ]. ( u F ( r i^i ( u X. u ) ) ) = y <-> A. y e. X [. ( `' R " { y } ) / u ]. ( u F ( R i^i ( u X. u ) ) ) = y ) ) |
30 |
22 29
|
anbi12d |
|- ( ( x = X /\ r = R ) -> ( ( r We x /\ A. y e. x [. ( `' r " { y } ) / u ]. ( u F ( r i^i ( u X. u ) ) ) = y ) <-> ( R We X /\ A. y e. X [. ( `' R " { y } ) / u ]. ( u F ( R i^i ( u X. u ) ) ) = y ) ) ) |
31 |
19 30
|
anbi12d |
|- ( ( x = X /\ r = R ) -> ( ( ( x C_ A /\ r C_ ( x X. x ) ) /\ ( r We x /\ A. y e. x [. ( `' r " { y } ) / u ]. ( u F ( r i^i ( u X. u ) ) ) = y ) ) <-> ( ( X C_ A /\ R C_ ( X X. X ) ) /\ ( R We X /\ A. y e. X [. ( `' R " { y } ) / u ]. ( u F ( R i^i ( u X. u ) ) ) = y ) ) ) ) |
32 |
31 1
|
brabga |
|- ( ( X e. _V /\ R e. _V ) -> ( X W R <-> ( ( X C_ A /\ R C_ ( X X. X ) ) /\ ( R We X /\ A. y e. X [. ( `' R " { y } ) / u ]. ( u F ( R i^i ( u X. u ) ) ) = y ) ) ) ) |
33 |
6 13 32
|
pm5.21nd |
|- ( ph -> ( X W R <-> ( ( X C_ A /\ R C_ ( X X. X ) ) /\ ( R We X /\ A. y e. X [. ( `' R " { y } ) / u ]. ( u F ( R i^i ( u X. u ) ) ) = y ) ) ) ) |