| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fpwwe2.1 |
|- W = { <. x , r >. | ( ( x C_ A /\ r C_ ( x X. x ) ) /\ ( r We x /\ A. y e. x [. ( `' r " { y } ) / u ]. ( u F ( r i^i ( u X. u ) ) ) = y ) ) } |
| 2 |
|
fpwwe2.2 |
|- ( ph -> A e. V ) |
| 3 |
|
fpwwe2lem3.4 |
|- ( ph -> X W R ) |
| 4 |
1 2
|
fpwwe2lem2 |
|- ( ph -> ( X W R <-> ( ( X C_ A /\ R C_ ( X X. X ) ) /\ ( R We X /\ A. y e. X [. ( `' R " { y } ) / u ]. ( u F ( R i^i ( u X. u ) ) ) = y ) ) ) ) |
| 5 |
3 4
|
mpbid |
|- ( ph -> ( ( X C_ A /\ R C_ ( X X. X ) ) /\ ( R We X /\ A. y e. X [. ( `' R " { y } ) / u ]. ( u F ( R i^i ( u X. u ) ) ) = y ) ) ) |
| 6 |
5
|
simprrd |
|- ( ph -> A. y e. X [. ( `' R " { y } ) / u ]. ( u F ( R i^i ( u X. u ) ) ) = y ) |
| 7 |
|
sneq |
|- ( y = B -> { y } = { B } ) |
| 8 |
7
|
imaeq2d |
|- ( y = B -> ( `' R " { y } ) = ( `' R " { B } ) ) |
| 9 |
|
eqeq2 |
|- ( y = B -> ( ( u F ( R i^i ( u X. u ) ) ) = y <-> ( u F ( R i^i ( u X. u ) ) ) = B ) ) |
| 10 |
8 9
|
sbceqbid |
|- ( y = B -> ( [. ( `' R " { y } ) / u ]. ( u F ( R i^i ( u X. u ) ) ) = y <-> [. ( `' R " { B } ) / u ]. ( u F ( R i^i ( u X. u ) ) ) = B ) ) |
| 11 |
10
|
rspccva |
|- ( ( A. y e. X [. ( `' R " { y } ) / u ]. ( u F ( R i^i ( u X. u ) ) ) = y /\ B e. X ) -> [. ( `' R " { B } ) / u ]. ( u F ( R i^i ( u X. u ) ) ) = B ) |
| 12 |
6 11
|
sylan |
|- ( ( ph /\ B e. X ) -> [. ( `' R " { B } ) / u ]. ( u F ( R i^i ( u X. u ) ) ) = B ) |
| 13 |
|
cnvimass |
|- ( `' R " { B } ) C_ dom R |
| 14 |
1
|
relopabiv |
|- Rel W |
| 15 |
14
|
brrelex2i |
|- ( X W R -> R e. _V ) |
| 16 |
|
dmexg |
|- ( R e. _V -> dom R e. _V ) |
| 17 |
3 15 16
|
3syl |
|- ( ph -> dom R e. _V ) |
| 18 |
|
ssexg |
|- ( ( ( `' R " { B } ) C_ dom R /\ dom R e. _V ) -> ( `' R " { B } ) e. _V ) |
| 19 |
13 17 18
|
sylancr |
|- ( ph -> ( `' R " { B } ) e. _V ) |
| 20 |
|
id |
|- ( u = ( `' R " { B } ) -> u = ( `' R " { B } ) ) |
| 21 |
20
|
sqxpeqd |
|- ( u = ( `' R " { B } ) -> ( u X. u ) = ( ( `' R " { B } ) X. ( `' R " { B } ) ) ) |
| 22 |
21
|
ineq2d |
|- ( u = ( `' R " { B } ) -> ( R i^i ( u X. u ) ) = ( R i^i ( ( `' R " { B } ) X. ( `' R " { B } ) ) ) ) |
| 23 |
20 22
|
oveq12d |
|- ( u = ( `' R " { B } ) -> ( u F ( R i^i ( u X. u ) ) ) = ( ( `' R " { B } ) F ( R i^i ( ( `' R " { B } ) X. ( `' R " { B } ) ) ) ) ) |
| 24 |
23
|
eqeq1d |
|- ( u = ( `' R " { B } ) -> ( ( u F ( R i^i ( u X. u ) ) ) = B <-> ( ( `' R " { B } ) F ( R i^i ( ( `' R " { B } ) X. ( `' R " { B } ) ) ) ) = B ) ) |
| 25 |
24
|
sbcieg |
|- ( ( `' R " { B } ) e. _V -> ( [. ( `' R " { B } ) / u ]. ( u F ( R i^i ( u X. u ) ) ) = B <-> ( ( `' R " { B } ) F ( R i^i ( ( `' R " { B } ) X. ( `' R " { B } ) ) ) ) = B ) ) |
| 26 |
19 25
|
syl |
|- ( ph -> ( [. ( `' R " { B } ) / u ]. ( u F ( R i^i ( u X. u ) ) ) = B <-> ( ( `' R " { B } ) F ( R i^i ( ( `' R " { B } ) X. ( `' R " { B } ) ) ) ) = B ) ) |
| 27 |
26
|
adantr |
|- ( ( ph /\ B e. X ) -> ( [. ( `' R " { B } ) / u ]. ( u F ( R i^i ( u X. u ) ) ) = B <-> ( ( `' R " { B } ) F ( R i^i ( ( `' R " { B } ) X. ( `' R " { B } ) ) ) ) = B ) ) |
| 28 |
12 27
|
mpbid |
|- ( ( ph /\ B e. X ) -> ( ( `' R " { B } ) F ( R i^i ( ( `' R " { B } ) X. ( `' R " { B } ) ) ) ) = B ) |