Step |
Hyp |
Ref |
Expression |
1 |
|
fpwwe2.1 |
|- W = { <. x , r >. | ( ( x C_ A /\ r C_ ( x X. x ) ) /\ ( r We x /\ A. y e. x [. ( `' r " { y } ) / u ]. ( u F ( r i^i ( u X. u ) ) ) = y ) ) } |
2 |
|
fpwwe2.2 |
|- ( ph -> A e. V ) |
3 |
|
fpwwe2.3 |
|- ( ( ph /\ ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) ) -> ( x F r ) e. A ) |
4 |
|
fpwwe2lem8.x |
|- ( ph -> X W R ) |
5 |
|
fpwwe2lem8.y |
|- ( ph -> Y W S ) |
6 |
|
fpwwe2lem8.m |
|- M = OrdIso ( R , X ) |
7 |
|
fpwwe2lem8.n |
|- N = OrdIso ( S , Y ) |
8 |
|
fpwwe2lem5.1 |
|- ( ph -> B e. dom M ) |
9 |
|
fpwwe2lem5.2 |
|- ( ph -> B e. dom N ) |
10 |
|
fpwwe2lem5.3 |
|- ( ph -> ( M |` B ) = ( N |` B ) ) |
11 |
1
|
relopabiv |
|- Rel W |
12 |
11
|
brrelex1i |
|- ( Y W S -> Y e. _V ) |
13 |
5 12
|
syl |
|- ( ph -> Y e. _V ) |
14 |
1 2
|
fpwwe2lem2 |
|- ( ph -> ( Y W S <-> ( ( Y C_ A /\ S C_ ( Y X. Y ) ) /\ ( S We Y /\ A. y e. Y [. ( `' S " { y } ) / u ]. ( u F ( S i^i ( u X. u ) ) ) = y ) ) ) ) |
15 |
5 14
|
mpbid |
|- ( ph -> ( ( Y C_ A /\ S C_ ( Y X. Y ) ) /\ ( S We Y /\ A. y e. Y [. ( `' S " { y } ) / u ]. ( u F ( S i^i ( u X. u ) ) ) = y ) ) ) |
16 |
15
|
simprld |
|- ( ph -> S We Y ) |
17 |
7
|
oiiso |
|- ( ( Y e. _V /\ S We Y ) -> N Isom _E , S ( dom N , Y ) ) |
18 |
13 16 17
|
syl2anc |
|- ( ph -> N Isom _E , S ( dom N , Y ) ) |
19 |
18
|
adantr |
|- ( ( ph /\ C R ( M ` B ) ) -> N Isom _E , S ( dom N , Y ) ) |
20 |
|
isof1o |
|- ( N Isom _E , S ( dom N , Y ) -> N : dom N -1-1-onto-> Y ) |
21 |
19 20
|
syl |
|- ( ( ph /\ C R ( M ` B ) ) -> N : dom N -1-1-onto-> Y ) |
22 |
1 2 3 4 5 6 7 8 9 10
|
fpwwe2lem5 |
|- ( ( ph /\ C R ( M ` B ) ) -> ( C e. X /\ C e. Y /\ ( `' M ` C ) = ( `' N ` C ) ) ) |
23 |
22
|
simp2d |
|- ( ( ph /\ C R ( M ` B ) ) -> C e. Y ) |
24 |
|
f1ocnvfv2 |
|- ( ( N : dom N -1-1-onto-> Y /\ C e. Y ) -> ( N ` ( `' N ` C ) ) = C ) |
25 |
21 23 24
|
syl2anc |
|- ( ( ph /\ C R ( M ` B ) ) -> ( N ` ( `' N ` C ) ) = C ) |
26 |
22
|
simp3d |
|- ( ( ph /\ C R ( M ` B ) ) -> ( `' M ` C ) = ( `' N ` C ) ) |
27 |
11
|
brrelex1i |
|- ( X W R -> X e. _V ) |
28 |
4 27
|
syl |
|- ( ph -> X e. _V ) |
29 |
1 2
|
fpwwe2lem2 |
|- ( ph -> ( X W R <-> ( ( X C_ A /\ R C_ ( X X. X ) ) /\ ( R We X /\ A. y e. X [. ( `' R " { y } ) / u ]. ( u F ( R i^i ( u X. u ) ) ) = y ) ) ) ) |
30 |
4 29
|
mpbid |
|- ( ph -> ( ( X C_ A /\ R C_ ( X X. X ) ) /\ ( R We X /\ A. y e. X [. ( `' R " { y } ) / u ]. ( u F ( R i^i ( u X. u ) ) ) = y ) ) ) |
31 |
30
|
simprld |
|- ( ph -> R We X ) |
32 |
6
|
oiiso |
|- ( ( X e. _V /\ R We X ) -> M Isom _E , R ( dom M , X ) ) |
33 |
28 31 32
|
syl2anc |
|- ( ph -> M Isom _E , R ( dom M , X ) ) |
34 |
33
|
adantr |
|- ( ( ph /\ C R ( M ` B ) ) -> M Isom _E , R ( dom M , X ) ) |
35 |
|
isof1o |
|- ( M Isom _E , R ( dom M , X ) -> M : dom M -1-1-onto-> X ) |
36 |
34 35
|
syl |
|- ( ( ph /\ C R ( M ` B ) ) -> M : dom M -1-1-onto-> X ) |
37 |
22
|
simp1d |
|- ( ( ph /\ C R ( M ` B ) ) -> C e. X ) |
38 |
|
f1ocnvfv2 |
|- ( ( M : dom M -1-1-onto-> X /\ C e. X ) -> ( M ` ( `' M ` C ) ) = C ) |
39 |
36 37 38
|
syl2anc |
|- ( ( ph /\ C R ( M ` B ) ) -> ( M ` ( `' M ` C ) ) = C ) |
40 |
|
simpr |
|- ( ( ph /\ C R ( M ` B ) ) -> C R ( M ` B ) ) |
41 |
39 40
|
eqbrtrd |
|- ( ( ph /\ C R ( M ` B ) ) -> ( M ` ( `' M ` C ) ) R ( M ` B ) ) |
42 |
|
f1ocnv |
|- ( M : dom M -1-1-onto-> X -> `' M : X -1-1-onto-> dom M ) |
43 |
|
f1of |
|- ( `' M : X -1-1-onto-> dom M -> `' M : X --> dom M ) |
44 |
36 42 43
|
3syl |
|- ( ( ph /\ C R ( M ` B ) ) -> `' M : X --> dom M ) |
45 |
44 37
|
ffvelrnd |
|- ( ( ph /\ C R ( M ` B ) ) -> ( `' M ` C ) e. dom M ) |
46 |
8
|
adantr |
|- ( ( ph /\ C R ( M ` B ) ) -> B e. dom M ) |
47 |
|
isorel |
|- ( ( M Isom _E , R ( dom M , X ) /\ ( ( `' M ` C ) e. dom M /\ B e. dom M ) ) -> ( ( `' M ` C ) _E B <-> ( M ` ( `' M ` C ) ) R ( M ` B ) ) ) |
48 |
34 45 46 47
|
syl12anc |
|- ( ( ph /\ C R ( M ` B ) ) -> ( ( `' M ` C ) _E B <-> ( M ` ( `' M ` C ) ) R ( M ` B ) ) ) |
49 |
41 48
|
mpbird |
|- ( ( ph /\ C R ( M ` B ) ) -> ( `' M ` C ) _E B ) |
50 |
26 49
|
eqbrtrrd |
|- ( ( ph /\ C R ( M ` B ) ) -> ( `' N ` C ) _E B ) |
51 |
|
f1ocnv |
|- ( N : dom N -1-1-onto-> Y -> `' N : Y -1-1-onto-> dom N ) |
52 |
|
f1of |
|- ( `' N : Y -1-1-onto-> dom N -> `' N : Y --> dom N ) |
53 |
21 51 52
|
3syl |
|- ( ( ph /\ C R ( M ` B ) ) -> `' N : Y --> dom N ) |
54 |
53 23
|
ffvelrnd |
|- ( ( ph /\ C R ( M ` B ) ) -> ( `' N ` C ) e. dom N ) |
55 |
9
|
adantr |
|- ( ( ph /\ C R ( M ` B ) ) -> B e. dom N ) |
56 |
|
isorel |
|- ( ( N Isom _E , S ( dom N , Y ) /\ ( ( `' N ` C ) e. dom N /\ B e. dom N ) ) -> ( ( `' N ` C ) _E B <-> ( N ` ( `' N ` C ) ) S ( N ` B ) ) ) |
57 |
19 54 55 56
|
syl12anc |
|- ( ( ph /\ C R ( M ` B ) ) -> ( ( `' N ` C ) _E B <-> ( N ` ( `' N ` C ) ) S ( N ` B ) ) ) |
58 |
50 57
|
mpbid |
|- ( ( ph /\ C R ( M ` B ) ) -> ( N ` ( `' N ` C ) ) S ( N ` B ) ) |
59 |
25 58
|
eqbrtrrd |
|- ( ( ph /\ C R ( M ` B ) ) -> C S ( N ` B ) ) |
60 |
26
|
adantrr |
|- ( ( ph /\ ( C R ( M ` B ) /\ D R ( M ` B ) ) ) -> ( `' M ` C ) = ( `' N ` C ) ) |
61 |
1 2 3 4 5 6 7 8 9 10
|
fpwwe2lem5 |
|- ( ( ph /\ D R ( M ` B ) ) -> ( D e. X /\ D e. Y /\ ( `' M ` D ) = ( `' N ` D ) ) ) |
62 |
61
|
simp3d |
|- ( ( ph /\ D R ( M ` B ) ) -> ( `' M ` D ) = ( `' N ` D ) ) |
63 |
62
|
adantrl |
|- ( ( ph /\ ( C R ( M ` B ) /\ D R ( M ` B ) ) ) -> ( `' M ` D ) = ( `' N ` D ) ) |
64 |
60 63
|
breq12d |
|- ( ( ph /\ ( C R ( M ` B ) /\ D R ( M ` B ) ) ) -> ( ( `' M ` C ) _E ( `' M ` D ) <-> ( `' N ` C ) _E ( `' N ` D ) ) ) |
65 |
33
|
adantr |
|- ( ( ph /\ ( C R ( M ` B ) /\ D R ( M ` B ) ) ) -> M Isom _E , R ( dom M , X ) ) |
66 |
|
isocnv |
|- ( M Isom _E , R ( dom M , X ) -> `' M Isom R , _E ( X , dom M ) ) |
67 |
65 66
|
syl |
|- ( ( ph /\ ( C R ( M ` B ) /\ D R ( M ` B ) ) ) -> `' M Isom R , _E ( X , dom M ) ) |
68 |
37
|
adantrr |
|- ( ( ph /\ ( C R ( M ` B ) /\ D R ( M ` B ) ) ) -> C e. X ) |
69 |
30
|
simplrd |
|- ( ph -> R C_ ( X X. X ) ) |
70 |
69
|
ssbrd |
|- ( ph -> ( D R ( M ` B ) -> D ( X X. X ) ( M ` B ) ) ) |
71 |
70
|
imp |
|- ( ( ph /\ D R ( M ` B ) ) -> D ( X X. X ) ( M ` B ) ) |
72 |
|
brxp |
|- ( D ( X X. X ) ( M ` B ) <-> ( D e. X /\ ( M ` B ) e. X ) ) |
73 |
72
|
simplbi |
|- ( D ( X X. X ) ( M ` B ) -> D e. X ) |
74 |
71 73
|
syl |
|- ( ( ph /\ D R ( M ` B ) ) -> D e. X ) |
75 |
74
|
adantrl |
|- ( ( ph /\ ( C R ( M ` B ) /\ D R ( M ` B ) ) ) -> D e. X ) |
76 |
|
isorel |
|- ( ( `' M Isom R , _E ( X , dom M ) /\ ( C e. X /\ D e. X ) ) -> ( C R D <-> ( `' M ` C ) _E ( `' M ` D ) ) ) |
77 |
67 68 75 76
|
syl12anc |
|- ( ( ph /\ ( C R ( M ` B ) /\ D R ( M ` B ) ) ) -> ( C R D <-> ( `' M ` C ) _E ( `' M ` D ) ) ) |
78 |
18
|
adantr |
|- ( ( ph /\ ( C R ( M ` B ) /\ D R ( M ` B ) ) ) -> N Isom _E , S ( dom N , Y ) ) |
79 |
|
isocnv |
|- ( N Isom _E , S ( dom N , Y ) -> `' N Isom S , _E ( Y , dom N ) ) |
80 |
78 79
|
syl |
|- ( ( ph /\ ( C R ( M ` B ) /\ D R ( M ` B ) ) ) -> `' N Isom S , _E ( Y , dom N ) ) |
81 |
23
|
adantrr |
|- ( ( ph /\ ( C R ( M ` B ) /\ D R ( M ` B ) ) ) -> C e. Y ) |
82 |
61
|
simp2d |
|- ( ( ph /\ D R ( M ` B ) ) -> D e. Y ) |
83 |
82
|
adantrl |
|- ( ( ph /\ ( C R ( M ` B ) /\ D R ( M ` B ) ) ) -> D e. Y ) |
84 |
|
isorel |
|- ( ( `' N Isom S , _E ( Y , dom N ) /\ ( C e. Y /\ D e. Y ) ) -> ( C S D <-> ( `' N ` C ) _E ( `' N ` D ) ) ) |
85 |
80 81 83 84
|
syl12anc |
|- ( ( ph /\ ( C R ( M ` B ) /\ D R ( M ` B ) ) ) -> ( C S D <-> ( `' N ` C ) _E ( `' N ` D ) ) ) |
86 |
64 77 85
|
3bitr4d |
|- ( ( ph /\ ( C R ( M ` B ) /\ D R ( M ` B ) ) ) -> ( C R D <-> C S D ) ) |
87 |
86
|
expr |
|- ( ( ph /\ C R ( M ` B ) ) -> ( D R ( M ` B ) -> ( C R D <-> C S D ) ) ) |
88 |
59 87
|
jca |
|- ( ( ph /\ C R ( M ` B ) ) -> ( C S ( N ` B ) /\ ( D R ( M ` B ) -> ( C R D <-> C S D ) ) ) ) |