| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fpwwe2.1 | 
							 |-  W = { <. x , r >. | ( ( x C_ A /\ r C_ ( x X. x ) ) /\ ( r We x /\ A. y e. x [. ( `' r " { y } ) / u ]. ( u F ( r i^i ( u X. u ) ) ) = y ) ) } | 
						
						
							| 2 | 
							
								
							 | 
							fpwwe2.2 | 
							 |-  ( ph -> A e. V )  | 
						
						
							| 3 | 
							
								
							 | 
							fpwwe2.3 | 
							 |-  ( ( ph /\ ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) ) -> ( x F r ) e. A )  | 
						
						
							| 4 | 
							
								
							 | 
							fpwwe2lem8.x | 
							 |-  ( ph -> X W R )  | 
						
						
							| 5 | 
							
								
							 | 
							fpwwe2lem8.y | 
							 |-  ( ph -> Y W S )  | 
						
						
							| 6 | 
							
								
							 | 
							fpwwe2lem8.m | 
							 |-  M = OrdIso ( R , X )  | 
						
						
							| 7 | 
							
								
							 | 
							fpwwe2lem8.n | 
							 |-  N = OrdIso ( S , Y )  | 
						
						
							| 8 | 
							
								
							 | 
							fpwwe2lem8.s | 
							 |-  ( ph -> dom M C_ dom N )  | 
						
						
							| 9 | 
							
								6
							 | 
							oif | 
							 |-  M : dom M --> X  | 
						
						
							| 10 | 
							
								
							 | 
							ffn | 
							 |-  ( M : dom M --> X -> M Fn dom M )  | 
						
						
							| 11 | 
							
								9 10
							 | 
							mp1i | 
							 |-  ( ph -> M Fn dom M )  | 
						
						
							| 12 | 
							
								7
							 | 
							oif | 
							 |-  N : dom N --> Y  | 
						
						
							| 13 | 
							
								
							 | 
							ffn | 
							 |-  ( N : dom N --> Y -> N Fn dom N )  | 
						
						
							| 14 | 
							
								12 13
							 | 
							mp1i | 
							 |-  ( ph -> N Fn dom N )  | 
						
						
							| 15 | 
							
								14 8
							 | 
							fnssresd | 
							 |-  ( ph -> ( N |` dom M ) Fn dom M )  | 
						
						
							| 16 | 
							
								6
							 | 
							oicl | 
							 |-  Ord dom M  | 
						
						
							| 17 | 
							
								
							 | 
							ordelon | 
							 |-  ( ( Ord dom M /\ w e. dom M ) -> w e. On )  | 
						
						
							| 18 | 
							
								16 17
							 | 
							mpan | 
							 |-  ( w e. dom M -> w e. On )  | 
						
						
							| 19 | 
							
								
							 | 
							eleq1w | 
							 |-  ( w = y -> ( w e. dom M <-> y e. dom M ) )  | 
						
						
							| 20 | 
							
								
							 | 
							fveq2 | 
							 |-  ( w = y -> ( M ` w ) = ( M ` y ) )  | 
						
						
							| 21 | 
							
								
							 | 
							fveq2 | 
							 |-  ( w = y -> ( N ` w ) = ( N ` y ) )  | 
						
						
							| 22 | 
							
								20 21
							 | 
							eqeq12d | 
							 |-  ( w = y -> ( ( M ` w ) = ( N ` w ) <-> ( M ` y ) = ( N ` y ) ) )  | 
						
						
							| 23 | 
							
								19 22
							 | 
							imbi12d | 
							 |-  ( w = y -> ( ( w e. dom M -> ( M ` w ) = ( N ` w ) ) <-> ( y e. dom M -> ( M ` y ) = ( N ` y ) ) ) )  | 
						
						
							| 24 | 
							
								23
							 | 
							imbi2d | 
							 |-  ( w = y -> ( ( ph -> ( w e. dom M -> ( M ` w ) = ( N ` w ) ) ) <-> ( ph -> ( y e. dom M -> ( M ` y ) = ( N ` y ) ) ) ) )  | 
						
						
							| 25 | 
							
								
							 | 
							r19.21v | 
							 |-  ( A. y e. w ( ph -> ( y e. dom M -> ( M ` y ) = ( N ` y ) ) ) <-> ( ph -> A. y e. w ( y e. dom M -> ( M ` y ) = ( N ` y ) ) ) )  | 
						
						
							| 26 | 
							
								16
							 | 
							a1i | 
							 |-  ( ph -> Ord dom M )  | 
						
						
							| 27 | 
							
								
							 | 
							ordelss | 
							 |-  ( ( Ord dom M /\ w e. dom M ) -> w C_ dom M )  | 
						
						
							| 28 | 
							
								26 27
							 | 
							sylan | 
							 |-  ( ( ph /\ w e. dom M ) -> w C_ dom M )  | 
						
						
							| 29 | 
							
								28
							 | 
							sselda | 
							 |-  ( ( ( ph /\ w e. dom M ) /\ y e. w ) -> y e. dom M )  | 
						
						
							| 30 | 
							
								
							 | 
							pm2.27 | 
							 |-  ( y e. dom M -> ( ( y e. dom M -> ( M ` y ) = ( N ` y ) ) -> ( M ` y ) = ( N ` y ) ) )  | 
						
						
							| 31 | 
							
								29 30
							 | 
							syl | 
							 |-  ( ( ( ph /\ w e. dom M ) /\ y e. w ) -> ( ( y e. dom M -> ( M ` y ) = ( N ` y ) ) -> ( M ` y ) = ( N ` y ) ) )  | 
						
						
							| 32 | 
							
								31
							 | 
							ralimdva | 
							 |-  ( ( ph /\ w e. dom M ) -> ( A. y e. w ( y e. dom M -> ( M ` y ) = ( N ` y ) ) -> A. y e. w ( M ` y ) = ( N ` y ) ) )  | 
						
						
							| 33 | 
							
								
							 | 
							fnssres | 
							 |-  ( ( M Fn dom M /\ w C_ dom M ) -> ( M |` w ) Fn w )  | 
						
						
							| 34 | 
							
								11 28 33
							 | 
							syl2an2r | 
							 |-  ( ( ph /\ w e. dom M ) -> ( M |` w ) Fn w )  | 
						
						
							| 35 | 
							
								8
							 | 
							adantr | 
							 |-  ( ( ph /\ w e. dom M ) -> dom M C_ dom N )  | 
						
						
							| 36 | 
							
								28 35
							 | 
							sstrd | 
							 |-  ( ( ph /\ w e. dom M ) -> w C_ dom N )  | 
						
						
							| 37 | 
							
								
							 | 
							fnssres | 
							 |-  ( ( N Fn dom N /\ w C_ dom N ) -> ( N |` w ) Fn w )  | 
						
						
							| 38 | 
							
								14 36 37
							 | 
							syl2an2r | 
							 |-  ( ( ph /\ w e. dom M ) -> ( N |` w ) Fn w )  | 
						
						
							| 39 | 
							
								
							 | 
							eqfnfv | 
							 |-  ( ( ( M |` w ) Fn w /\ ( N |` w ) Fn w ) -> ( ( M |` w ) = ( N |` w ) <-> A. y e. w ( ( M |` w ) ` y ) = ( ( N |` w ) ` y ) ) )  | 
						
						
							| 40 | 
							
								34 38 39
							 | 
							syl2anc | 
							 |-  ( ( ph /\ w e. dom M ) -> ( ( M |` w ) = ( N |` w ) <-> A. y e. w ( ( M |` w ) ` y ) = ( ( N |` w ) ` y ) ) )  | 
						
						
							| 41 | 
							
								
							 | 
							fvres | 
							 |-  ( y e. w -> ( ( M |` w ) ` y ) = ( M ` y ) )  | 
						
						
							| 42 | 
							
								
							 | 
							fvres | 
							 |-  ( y e. w -> ( ( N |` w ) ` y ) = ( N ` y ) )  | 
						
						
							| 43 | 
							
								41 42
							 | 
							eqeq12d | 
							 |-  ( y e. w -> ( ( ( M |` w ) ` y ) = ( ( N |` w ) ` y ) <-> ( M ` y ) = ( N ` y ) ) )  | 
						
						
							| 44 | 
							
								43
							 | 
							ralbiia | 
							 |-  ( A. y e. w ( ( M |` w ) ` y ) = ( ( N |` w ) ` y ) <-> A. y e. w ( M ` y ) = ( N ` y ) )  | 
						
						
							| 45 | 
							
								40 44
							 | 
							bitrdi | 
							 |-  ( ( ph /\ w e. dom M ) -> ( ( M |` w ) = ( N |` w ) <-> A. y e. w ( M ` y ) = ( N ` y ) ) )  | 
						
						
							| 46 | 
							
								2
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ w e. dom M ) /\ ( M |` w ) = ( N |` w ) ) -> A e. V )  | 
						
						
							| 47 | 
							
								
							 | 
							simpll | 
							 |-  ( ( ( ph /\ w e. dom M ) /\ ( M |` w ) = ( N |` w ) ) -> ph )  | 
						
						
							| 48 | 
							
								47 3
							 | 
							sylan | 
							 |-  ( ( ( ( ph /\ w e. dom M ) /\ ( M |` w ) = ( N |` w ) ) /\ ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) ) -> ( x F r ) e. A )  | 
						
						
							| 49 | 
							
								4
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ w e. dom M ) /\ ( M |` w ) = ( N |` w ) ) -> X W R )  | 
						
						
							| 50 | 
							
								5
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ w e. dom M ) /\ ( M |` w ) = ( N |` w ) ) -> Y W S )  | 
						
						
							| 51 | 
							
								
							 | 
							simplr | 
							 |-  ( ( ( ph /\ w e. dom M ) /\ ( M |` w ) = ( N |` w ) ) -> w e. dom M )  | 
						
						
							| 52 | 
							
								8
							 | 
							sselda | 
							 |-  ( ( ph /\ w e. dom M ) -> w e. dom N )  | 
						
						
							| 53 | 
							
								52
							 | 
							adantr | 
							 |-  ( ( ( ph /\ w e. dom M ) /\ ( M |` w ) = ( N |` w ) ) -> w e. dom N )  | 
						
						
							| 54 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ( ph /\ w e. dom M ) /\ ( M |` w ) = ( N |` w ) ) -> ( M |` w ) = ( N |` w ) )  | 
						
						
							| 55 | 
							
								1 46 48 49 50 6 7 51 53 54
							 | 
							fpwwe2lem6 | 
							 |-  ( ( ( ( ph /\ w e. dom M ) /\ ( M |` w ) = ( N |` w ) ) /\ y R ( M ` w ) ) -> ( y S ( N ` w ) /\ ( z R ( M ` w ) -> ( y R z <-> y S z ) ) ) )  | 
						
						
							| 56 | 
							
								55
							 | 
							simpld | 
							 |-  ( ( ( ( ph /\ w e. dom M ) /\ ( M |` w ) = ( N |` w ) ) /\ y R ( M ` w ) ) -> y S ( N ` w ) )  | 
						
						
							| 57 | 
							
								54
							 | 
							eqcomd | 
							 |-  ( ( ( ph /\ w e. dom M ) /\ ( M |` w ) = ( N |` w ) ) -> ( N |` w ) = ( M |` w ) )  | 
						
						
							| 58 | 
							
								1 46 48 50 49 7 6 53 51 57
							 | 
							fpwwe2lem6 | 
							 |-  ( ( ( ( ph /\ w e. dom M ) /\ ( M |` w ) = ( N |` w ) ) /\ y S ( N ` w ) ) -> ( y R ( M ` w ) /\ ( z S ( N ` w ) -> ( y S z <-> y R z ) ) ) )  | 
						
						
							| 59 | 
							
								58
							 | 
							simpld | 
							 |-  ( ( ( ( ph /\ w e. dom M ) /\ ( M |` w ) = ( N |` w ) ) /\ y S ( N ` w ) ) -> y R ( M ` w ) )  | 
						
						
							| 60 | 
							
								56 59
							 | 
							impbida | 
							 |-  ( ( ( ph /\ w e. dom M ) /\ ( M |` w ) = ( N |` w ) ) -> ( y R ( M ` w ) <-> y S ( N ` w ) ) )  | 
						
						
							| 61 | 
							
								
							 | 
							fvex | 
							 |-  ( M ` w ) e. _V  | 
						
						
							| 62 | 
							
								
							 | 
							vex | 
							 |-  y e. _V  | 
						
						
							| 63 | 
							
								62
							 | 
							eliniseg | 
							 |-  ( ( M ` w ) e. _V -> ( y e. ( `' R " { ( M ` w ) } ) <-> y R ( M ` w ) ) ) | 
						
						
							| 64 | 
							
								61 63
							 | 
							ax-mp | 
							 |-  ( y e. ( `' R " { ( M ` w ) } ) <-> y R ( M ` w ) ) | 
						
						
							| 65 | 
							
								
							 | 
							fvex | 
							 |-  ( N ` w ) e. _V  | 
						
						
							| 66 | 
							
								62
							 | 
							eliniseg | 
							 |-  ( ( N ` w ) e. _V -> ( y e. ( `' S " { ( N ` w ) } ) <-> y S ( N ` w ) ) ) | 
						
						
							| 67 | 
							
								65 66
							 | 
							ax-mp | 
							 |-  ( y e. ( `' S " { ( N ` w ) } ) <-> y S ( N ` w ) ) | 
						
						
							| 68 | 
							
								60 64 67
							 | 
							3bitr4g | 
							 |-  ( ( ( ph /\ w e. dom M ) /\ ( M |` w ) = ( N |` w ) ) -> ( y e. ( `' R " { ( M ` w ) } ) <-> y e. ( `' S " { ( N ` w ) } ) ) ) | 
						
						
							| 69 | 
							
								68
							 | 
							eqrdv | 
							 |-  ( ( ( ph /\ w e. dom M ) /\ ( M |` w ) = ( N |` w ) ) -> ( `' R " { ( M ` w ) } ) = ( `' S " { ( N ` w ) } ) ) | 
						
						
							| 70 | 
							
								
							 | 
							relinxp | 
							 |-  Rel ( R i^i ( ( `' R " { ( M ` w ) } ) X. ( `' R " { ( M ` w ) } ) ) ) | 
						
						
							| 71 | 
							
								
							 | 
							relinxp | 
							 |-  Rel ( S i^i ( ( `' R " { ( M ` w ) } ) X. ( `' R " { ( M ` w ) } ) ) ) | 
						
						
							| 72 | 
							
								
							 | 
							vex | 
							 |-  z e. _V  | 
						
						
							| 73 | 
							
								72
							 | 
							eliniseg | 
							 |-  ( ( M ` w ) e. _V -> ( z e. ( `' R " { ( M ` w ) } ) <-> z R ( M ` w ) ) ) | 
						
						
							| 74 | 
							
								63 73
							 | 
							anbi12d | 
							 |-  ( ( M ` w ) e. _V -> ( ( y e. ( `' R " { ( M ` w ) } ) /\ z e. ( `' R " { ( M ` w ) } ) ) <-> ( y R ( M ` w ) /\ z R ( M ` w ) ) ) ) | 
						
						
							| 75 | 
							
								61 74
							 | 
							ax-mp | 
							 |-  ( ( y e. ( `' R " { ( M ` w ) } ) /\ z e. ( `' R " { ( M ` w ) } ) ) <-> ( y R ( M ` w ) /\ z R ( M ` w ) ) ) | 
						
						
							| 76 | 
							
								55
							 | 
							simprd | 
							 |-  ( ( ( ( ph /\ w e. dom M ) /\ ( M |` w ) = ( N |` w ) ) /\ y R ( M ` w ) ) -> ( z R ( M ` w ) -> ( y R z <-> y S z ) ) )  | 
						
						
							| 77 | 
							
								76
							 | 
							impr | 
							 |-  ( ( ( ( ph /\ w e. dom M ) /\ ( M |` w ) = ( N |` w ) ) /\ ( y R ( M ` w ) /\ z R ( M ` w ) ) ) -> ( y R z <-> y S z ) )  | 
						
						
							| 78 | 
							
								75 77
							 | 
							sylan2b | 
							 |-  ( ( ( ( ph /\ w e. dom M ) /\ ( M |` w ) = ( N |` w ) ) /\ ( y e. ( `' R " { ( M ` w ) } ) /\ z e. ( `' R " { ( M ` w ) } ) ) ) -> ( y R z <-> y S z ) ) | 
						
						
							| 79 | 
							
								78
							 | 
							pm5.32da | 
							 |-  ( ( ( ph /\ w e. dom M ) /\ ( M |` w ) = ( N |` w ) ) -> ( ( ( y e. ( `' R " { ( M ` w ) } ) /\ z e. ( `' R " { ( M ` w ) } ) ) /\ y R z ) <-> ( ( y e. ( `' R " { ( M ` w ) } ) /\ z e. ( `' R " { ( M ` w ) } ) ) /\ y S z ) ) ) | 
						
						
							| 80 | 
							
								
							 | 
							df-br | 
							 |-  ( y ( R i^i ( ( `' R " { ( M ` w ) } ) X. ( `' R " { ( M ` w ) } ) ) ) z <-> <. y , z >. e. ( R i^i ( ( `' R " { ( M ` w ) } ) X. ( `' R " { ( M ` w ) } ) ) ) ) | 
						
						
							| 81 | 
							
								
							 | 
							brinxp2 | 
							 |-  ( y ( R i^i ( ( `' R " { ( M ` w ) } ) X. ( `' R " { ( M ` w ) } ) ) ) z <-> ( ( y e. ( `' R " { ( M ` w ) } ) /\ z e. ( `' R " { ( M ` w ) } ) ) /\ y R z ) ) | 
						
						
							| 82 | 
							
								80 81
							 | 
							bitr3i | 
							 |-  ( <. y , z >. e. ( R i^i ( ( `' R " { ( M ` w ) } ) X. ( `' R " { ( M ` w ) } ) ) ) <-> ( ( y e. ( `' R " { ( M ` w ) } ) /\ z e. ( `' R " { ( M ` w ) } ) ) /\ y R z ) ) | 
						
						
							| 83 | 
							
								
							 | 
							df-br | 
							 |-  ( y ( S i^i ( ( `' R " { ( M ` w ) } ) X. ( `' R " { ( M ` w ) } ) ) ) z <-> <. y , z >. e. ( S i^i ( ( `' R " { ( M ` w ) } ) X. ( `' R " { ( M ` w ) } ) ) ) ) | 
						
						
							| 84 | 
							
								
							 | 
							brinxp2 | 
							 |-  ( y ( S i^i ( ( `' R " { ( M ` w ) } ) X. ( `' R " { ( M ` w ) } ) ) ) z <-> ( ( y e. ( `' R " { ( M ` w ) } ) /\ z e. ( `' R " { ( M ` w ) } ) ) /\ y S z ) ) | 
						
						
							| 85 | 
							
								83 84
							 | 
							bitr3i | 
							 |-  ( <. y , z >. e. ( S i^i ( ( `' R " { ( M ` w ) } ) X. ( `' R " { ( M ` w ) } ) ) ) <-> ( ( y e. ( `' R " { ( M ` w ) } ) /\ z e. ( `' R " { ( M ` w ) } ) ) /\ y S z ) ) | 
						
						
							| 86 | 
							
								79 82 85
							 | 
							3bitr4g | 
							 |-  ( ( ( ph /\ w e. dom M ) /\ ( M |` w ) = ( N |` w ) ) -> ( <. y , z >. e. ( R i^i ( ( `' R " { ( M ` w ) } ) X. ( `' R " { ( M ` w ) } ) ) ) <-> <. y , z >. e. ( S i^i ( ( `' R " { ( M ` w ) } ) X. ( `' R " { ( M ` w ) } ) ) ) ) ) | 
						
						
							| 87 | 
							
								70 71 86
							 | 
							eqrelrdv | 
							 |-  ( ( ( ph /\ w e. dom M ) /\ ( M |` w ) = ( N |` w ) ) -> ( R i^i ( ( `' R " { ( M ` w ) } ) X. ( `' R " { ( M ` w ) } ) ) ) = ( S i^i ( ( `' R " { ( M ` w ) } ) X. ( `' R " { ( M ` w ) } ) ) ) ) | 
						
						
							| 88 | 
							
								69
							 | 
							sqxpeqd | 
							 |-  ( ( ( ph /\ w e. dom M ) /\ ( M |` w ) = ( N |` w ) ) -> ( ( `' R " { ( M ` w ) } ) X. ( `' R " { ( M ` w ) } ) ) = ( ( `' S " { ( N ` w ) } ) X. ( `' S " { ( N ` w ) } ) ) ) | 
						
						
							| 89 | 
							
								88
							 | 
							ineq2d | 
							 |-  ( ( ( ph /\ w e. dom M ) /\ ( M |` w ) = ( N |` w ) ) -> ( S i^i ( ( `' R " { ( M ` w ) } ) X. ( `' R " { ( M ` w ) } ) ) ) = ( S i^i ( ( `' S " { ( N ` w ) } ) X. ( `' S " { ( N ` w ) } ) ) ) ) | 
						
						
							| 90 | 
							
								87 89
							 | 
							eqtrd | 
							 |-  ( ( ( ph /\ w e. dom M ) /\ ( M |` w ) = ( N |` w ) ) -> ( R i^i ( ( `' R " { ( M ` w ) } ) X. ( `' R " { ( M ` w ) } ) ) ) = ( S i^i ( ( `' S " { ( N ` w ) } ) X. ( `' S " { ( N ` w ) } ) ) ) ) | 
						
						
							| 91 | 
							
								69 90
							 | 
							oveq12d | 
							 |-  ( ( ( ph /\ w e. dom M ) /\ ( M |` w ) = ( N |` w ) ) -> ( ( `' R " { ( M ` w ) } ) F ( R i^i ( ( `' R " { ( M ` w ) } ) X. ( `' R " { ( M ` w ) } ) ) ) ) = ( ( `' S " { ( N ` w ) } ) F ( S i^i ( ( `' S " { ( N ` w ) } ) X. ( `' S " { ( N ` w ) } ) ) ) ) ) | 
						
						
							| 92 | 
							
								9
							 | 
							ffvelcdmi | 
							 |-  ( w e. dom M -> ( M ` w ) e. X )  | 
						
						
							| 93 | 
							
								92
							 | 
							adantl | 
							 |-  ( ( ph /\ w e. dom M ) -> ( M ` w ) e. X )  | 
						
						
							| 94 | 
							
								93
							 | 
							adantr | 
							 |-  ( ( ( ph /\ w e. dom M ) /\ ( M |` w ) = ( N |` w ) ) -> ( M ` w ) e. X )  | 
						
						
							| 95 | 
							
								1 2 4
							 | 
							fpwwe2lem3 | 
							 |-  ( ( ph /\ ( M ` w ) e. X ) -> ( ( `' R " { ( M ` w ) } ) F ( R i^i ( ( `' R " { ( M ` w ) } ) X. ( `' R " { ( M ` w ) } ) ) ) ) = ( M ` w ) ) | 
						
						
							| 96 | 
							
								47 94 95
							 | 
							syl2anc | 
							 |-  ( ( ( ph /\ w e. dom M ) /\ ( M |` w ) = ( N |` w ) ) -> ( ( `' R " { ( M ` w ) } ) F ( R i^i ( ( `' R " { ( M ` w ) } ) X. ( `' R " { ( M ` w ) } ) ) ) ) = ( M ` w ) ) | 
						
						
							| 97 | 
							
								12
							 | 
							ffvelcdmi | 
							 |-  ( w e. dom N -> ( N ` w ) e. Y )  | 
						
						
							| 98 | 
							
								52 97
							 | 
							syl | 
							 |-  ( ( ph /\ w e. dom M ) -> ( N ` w ) e. Y )  | 
						
						
							| 99 | 
							
								98
							 | 
							adantr | 
							 |-  ( ( ( ph /\ w e. dom M ) /\ ( M |` w ) = ( N |` w ) ) -> ( N ` w ) e. Y )  | 
						
						
							| 100 | 
							
								1 2 5
							 | 
							fpwwe2lem3 | 
							 |-  ( ( ph /\ ( N ` w ) e. Y ) -> ( ( `' S " { ( N ` w ) } ) F ( S i^i ( ( `' S " { ( N ` w ) } ) X. ( `' S " { ( N ` w ) } ) ) ) ) = ( N ` w ) ) | 
						
						
							| 101 | 
							
								47 99 100
							 | 
							syl2anc | 
							 |-  ( ( ( ph /\ w e. dom M ) /\ ( M |` w ) = ( N |` w ) ) -> ( ( `' S " { ( N ` w ) } ) F ( S i^i ( ( `' S " { ( N ` w ) } ) X. ( `' S " { ( N ` w ) } ) ) ) ) = ( N ` w ) ) | 
						
						
							| 102 | 
							
								91 96 101
							 | 
							3eqtr3d | 
							 |-  ( ( ( ph /\ w e. dom M ) /\ ( M |` w ) = ( N |` w ) ) -> ( M ` w ) = ( N ` w ) )  | 
						
						
							| 103 | 
							
								102
							 | 
							ex | 
							 |-  ( ( ph /\ w e. dom M ) -> ( ( M |` w ) = ( N |` w ) -> ( M ` w ) = ( N ` w ) ) )  | 
						
						
							| 104 | 
							
								45 103
							 | 
							sylbird | 
							 |-  ( ( ph /\ w e. dom M ) -> ( A. y e. w ( M ` y ) = ( N ` y ) -> ( M ` w ) = ( N ` w ) ) )  | 
						
						
							| 105 | 
							
								32 104
							 | 
							syld | 
							 |-  ( ( ph /\ w e. dom M ) -> ( A. y e. w ( y e. dom M -> ( M ` y ) = ( N ` y ) ) -> ( M ` w ) = ( N ` w ) ) )  | 
						
						
							| 106 | 
							
								105
							 | 
							ex | 
							 |-  ( ph -> ( w e. dom M -> ( A. y e. w ( y e. dom M -> ( M ` y ) = ( N ` y ) ) -> ( M ` w ) = ( N ` w ) ) ) )  | 
						
						
							| 107 | 
							
								106
							 | 
							com23 | 
							 |-  ( ph -> ( A. y e. w ( y e. dom M -> ( M ` y ) = ( N ` y ) ) -> ( w e. dom M -> ( M ` w ) = ( N ` w ) ) ) )  | 
						
						
							| 108 | 
							
								107
							 | 
							a2i | 
							 |-  ( ( ph -> A. y e. w ( y e. dom M -> ( M ` y ) = ( N ` y ) ) ) -> ( ph -> ( w e. dom M -> ( M ` w ) = ( N ` w ) ) ) )  | 
						
						
							| 109 | 
							
								25 108
							 | 
							sylbi | 
							 |-  ( A. y e. w ( ph -> ( y e. dom M -> ( M ` y ) = ( N ` y ) ) ) -> ( ph -> ( w e. dom M -> ( M ` w ) = ( N ` w ) ) ) )  | 
						
						
							| 110 | 
							
								109
							 | 
							a1i | 
							 |-  ( w e. On -> ( A. y e. w ( ph -> ( y e. dom M -> ( M ` y ) = ( N ` y ) ) ) -> ( ph -> ( w e. dom M -> ( M ` w ) = ( N ` w ) ) ) ) )  | 
						
						
							| 111 | 
							
								24 110
							 | 
							tfis2 | 
							 |-  ( w e. On -> ( ph -> ( w e. dom M -> ( M ` w ) = ( N ` w ) ) ) )  | 
						
						
							| 112 | 
							
								111
							 | 
							com3l | 
							 |-  ( ph -> ( w e. dom M -> ( w e. On -> ( M ` w ) = ( N ` w ) ) ) )  | 
						
						
							| 113 | 
							
								18 112
							 | 
							mpdi | 
							 |-  ( ph -> ( w e. dom M -> ( M ` w ) = ( N ` w ) ) )  | 
						
						
							| 114 | 
							
								113
							 | 
							imp | 
							 |-  ( ( ph /\ w e. dom M ) -> ( M ` w ) = ( N ` w ) )  | 
						
						
							| 115 | 
							
								
							 | 
							fvres | 
							 |-  ( w e. dom M -> ( ( N |` dom M ) ` w ) = ( N ` w ) )  | 
						
						
							| 116 | 
							
								115
							 | 
							adantl | 
							 |-  ( ( ph /\ w e. dom M ) -> ( ( N |` dom M ) ` w ) = ( N ` w ) )  | 
						
						
							| 117 | 
							
								114 116
							 | 
							eqtr4d | 
							 |-  ( ( ph /\ w e. dom M ) -> ( M ` w ) = ( ( N |` dom M ) ` w ) )  | 
						
						
							| 118 | 
							
								11 15 117
							 | 
							eqfnfvd | 
							 |-  ( ph -> M = ( N |` dom M ) )  |