Step |
Hyp |
Ref |
Expression |
1 |
|
fpwwe2.1 |
|- W = { <. x , r >. | ( ( x C_ A /\ r C_ ( x X. x ) ) /\ ( r We x /\ A. y e. x [. ( `' r " { y } ) / u ]. ( u F ( r i^i ( u X. u ) ) ) = y ) ) } |
2 |
|
fpwwe2.2 |
|- ( ph -> A e. V ) |
3 |
|
fpwwe2.3 |
|- ( ( ph /\ ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) ) -> ( x F r ) e. A ) |
4 |
|
fpwwe2lem8.x |
|- ( ph -> X W R ) |
5 |
|
fpwwe2lem8.y |
|- ( ph -> Y W S ) |
6 |
|
fpwwe2lem8.m |
|- M = OrdIso ( R , X ) |
7 |
|
fpwwe2lem8.n |
|- N = OrdIso ( S , Y ) |
8 |
|
fpwwe2lem8.s |
|- ( ph -> dom M C_ dom N ) |
9 |
6
|
oif |
|- M : dom M --> X |
10 |
|
ffn |
|- ( M : dom M --> X -> M Fn dom M ) |
11 |
9 10
|
mp1i |
|- ( ph -> M Fn dom M ) |
12 |
7
|
oif |
|- N : dom N --> Y |
13 |
|
ffn |
|- ( N : dom N --> Y -> N Fn dom N ) |
14 |
12 13
|
mp1i |
|- ( ph -> N Fn dom N ) |
15 |
14 8
|
fnssresd |
|- ( ph -> ( N |` dom M ) Fn dom M ) |
16 |
6
|
oicl |
|- Ord dom M |
17 |
|
ordelon |
|- ( ( Ord dom M /\ w e. dom M ) -> w e. On ) |
18 |
16 17
|
mpan |
|- ( w e. dom M -> w e. On ) |
19 |
|
eleq1w |
|- ( w = y -> ( w e. dom M <-> y e. dom M ) ) |
20 |
|
fveq2 |
|- ( w = y -> ( M ` w ) = ( M ` y ) ) |
21 |
|
fveq2 |
|- ( w = y -> ( N ` w ) = ( N ` y ) ) |
22 |
20 21
|
eqeq12d |
|- ( w = y -> ( ( M ` w ) = ( N ` w ) <-> ( M ` y ) = ( N ` y ) ) ) |
23 |
19 22
|
imbi12d |
|- ( w = y -> ( ( w e. dom M -> ( M ` w ) = ( N ` w ) ) <-> ( y e. dom M -> ( M ` y ) = ( N ` y ) ) ) ) |
24 |
23
|
imbi2d |
|- ( w = y -> ( ( ph -> ( w e. dom M -> ( M ` w ) = ( N ` w ) ) ) <-> ( ph -> ( y e. dom M -> ( M ` y ) = ( N ` y ) ) ) ) ) |
25 |
|
r19.21v |
|- ( A. y e. w ( ph -> ( y e. dom M -> ( M ` y ) = ( N ` y ) ) ) <-> ( ph -> A. y e. w ( y e. dom M -> ( M ` y ) = ( N ` y ) ) ) ) |
26 |
16
|
a1i |
|- ( ph -> Ord dom M ) |
27 |
|
ordelss |
|- ( ( Ord dom M /\ w e. dom M ) -> w C_ dom M ) |
28 |
26 27
|
sylan |
|- ( ( ph /\ w e. dom M ) -> w C_ dom M ) |
29 |
28
|
sselda |
|- ( ( ( ph /\ w e. dom M ) /\ y e. w ) -> y e. dom M ) |
30 |
|
pm2.27 |
|- ( y e. dom M -> ( ( y e. dom M -> ( M ` y ) = ( N ` y ) ) -> ( M ` y ) = ( N ` y ) ) ) |
31 |
29 30
|
syl |
|- ( ( ( ph /\ w e. dom M ) /\ y e. w ) -> ( ( y e. dom M -> ( M ` y ) = ( N ` y ) ) -> ( M ` y ) = ( N ` y ) ) ) |
32 |
31
|
ralimdva |
|- ( ( ph /\ w e. dom M ) -> ( A. y e. w ( y e. dom M -> ( M ` y ) = ( N ` y ) ) -> A. y e. w ( M ` y ) = ( N ` y ) ) ) |
33 |
|
fnssres |
|- ( ( M Fn dom M /\ w C_ dom M ) -> ( M |` w ) Fn w ) |
34 |
11 28 33
|
syl2an2r |
|- ( ( ph /\ w e. dom M ) -> ( M |` w ) Fn w ) |
35 |
8
|
adantr |
|- ( ( ph /\ w e. dom M ) -> dom M C_ dom N ) |
36 |
28 35
|
sstrd |
|- ( ( ph /\ w e. dom M ) -> w C_ dom N ) |
37 |
|
fnssres |
|- ( ( N Fn dom N /\ w C_ dom N ) -> ( N |` w ) Fn w ) |
38 |
14 36 37
|
syl2an2r |
|- ( ( ph /\ w e. dom M ) -> ( N |` w ) Fn w ) |
39 |
|
eqfnfv |
|- ( ( ( M |` w ) Fn w /\ ( N |` w ) Fn w ) -> ( ( M |` w ) = ( N |` w ) <-> A. y e. w ( ( M |` w ) ` y ) = ( ( N |` w ) ` y ) ) ) |
40 |
34 38 39
|
syl2anc |
|- ( ( ph /\ w e. dom M ) -> ( ( M |` w ) = ( N |` w ) <-> A. y e. w ( ( M |` w ) ` y ) = ( ( N |` w ) ` y ) ) ) |
41 |
|
fvres |
|- ( y e. w -> ( ( M |` w ) ` y ) = ( M ` y ) ) |
42 |
|
fvres |
|- ( y e. w -> ( ( N |` w ) ` y ) = ( N ` y ) ) |
43 |
41 42
|
eqeq12d |
|- ( y e. w -> ( ( ( M |` w ) ` y ) = ( ( N |` w ) ` y ) <-> ( M ` y ) = ( N ` y ) ) ) |
44 |
43
|
ralbiia |
|- ( A. y e. w ( ( M |` w ) ` y ) = ( ( N |` w ) ` y ) <-> A. y e. w ( M ` y ) = ( N ` y ) ) |
45 |
40 44
|
bitrdi |
|- ( ( ph /\ w e. dom M ) -> ( ( M |` w ) = ( N |` w ) <-> A. y e. w ( M ` y ) = ( N ` y ) ) ) |
46 |
2
|
ad2antrr |
|- ( ( ( ph /\ w e. dom M ) /\ ( M |` w ) = ( N |` w ) ) -> A e. V ) |
47 |
|
simpll |
|- ( ( ( ph /\ w e. dom M ) /\ ( M |` w ) = ( N |` w ) ) -> ph ) |
48 |
47 3
|
sylan |
|- ( ( ( ( ph /\ w e. dom M ) /\ ( M |` w ) = ( N |` w ) ) /\ ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) ) -> ( x F r ) e. A ) |
49 |
4
|
ad2antrr |
|- ( ( ( ph /\ w e. dom M ) /\ ( M |` w ) = ( N |` w ) ) -> X W R ) |
50 |
5
|
ad2antrr |
|- ( ( ( ph /\ w e. dom M ) /\ ( M |` w ) = ( N |` w ) ) -> Y W S ) |
51 |
|
simplr |
|- ( ( ( ph /\ w e. dom M ) /\ ( M |` w ) = ( N |` w ) ) -> w e. dom M ) |
52 |
8
|
sselda |
|- ( ( ph /\ w e. dom M ) -> w e. dom N ) |
53 |
52
|
adantr |
|- ( ( ( ph /\ w e. dom M ) /\ ( M |` w ) = ( N |` w ) ) -> w e. dom N ) |
54 |
|
simpr |
|- ( ( ( ph /\ w e. dom M ) /\ ( M |` w ) = ( N |` w ) ) -> ( M |` w ) = ( N |` w ) ) |
55 |
1 46 48 49 50 6 7 51 53 54
|
fpwwe2lem6 |
|- ( ( ( ( ph /\ w e. dom M ) /\ ( M |` w ) = ( N |` w ) ) /\ y R ( M ` w ) ) -> ( y S ( N ` w ) /\ ( z R ( M ` w ) -> ( y R z <-> y S z ) ) ) ) |
56 |
55
|
simpld |
|- ( ( ( ( ph /\ w e. dom M ) /\ ( M |` w ) = ( N |` w ) ) /\ y R ( M ` w ) ) -> y S ( N ` w ) ) |
57 |
54
|
eqcomd |
|- ( ( ( ph /\ w e. dom M ) /\ ( M |` w ) = ( N |` w ) ) -> ( N |` w ) = ( M |` w ) ) |
58 |
1 46 48 50 49 7 6 53 51 57
|
fpwwe2lem6 |
|- ( ( ( ( ph /\ w e. dom M ) /\ ( M |` w ) = ( N |` w ) ) /\ y S ( N ` w ) ) -> ( y R ( M ` w ) /\ ( z S ( N ` w ) -> ( y S z <-> y R z ) ) ) ) |
59 |
58
|
simpld |
|- ( ( ( ( ph /\ w e. dom M ) /\ ( M |` w ) = ( N |` w ) ) /\ y S ( N ` w ) ) -> y R ( M ` w ) ) |
60 |
56 59
|
impbida |
|- ( ( ( ph /\ w e. dom M ) /\ ( M |` w ) = ( N |` w ) ) -> ( y R ( M ` w ) <-> y S ( N ` w ) ) ) |
61 |
|
fvex |
|- ( M ` w ) e. _V |
62 |
|
vex |
|- y e. _V |
63 |
62
|
eliniseg |
|- ( ( M ` w ) e. _V -> ( y e. ( `' R " { ( M ` w ) } ) <-> y R ( M ` w ) ) ) |
64 |
61 63
|
ax-mp |
|- ( y e. ( `' R " { ( M ` w ) } ) <-> y R ( M ` w ) ) |
65 |
|
fvex |
|- ( N ` w ) e. _V |
66 |
62
|
eliniseg |
|- ( ( N ` w ) e. _V -> ( y e. ( `' S " { ( N ` w ) } ) <-> y S ( N ` w ) ) ) |
67 |
65 66
|
ax-mp |
|- ( y e. ( `' S " { ( N ` w ) } ) <-> y S ( N ` w ) ) |
68 |
60 64 67
|
3bitr4g |
|- ( ( ( ph /\ w e. dom M ) /\ ( M |` w ) = ( N |` w ) ) -> ( y e. ( `' R " { ( M ` w ) } ) <-> y e. ( `' S " { ( N ` w ) } ) ) ) |
69 |
68
|
eqrdv |
|- ( ( ( ph /\ w e. dom M ) /\ ( M |` w ) = ( N |` w ) ) -> ( `' R " { ( M ` w ) } ) = ( `' S " { ( N ` w ) } ) ) |
70 |
|
relinxp |
|- Rel ( R i^i ( ( `' R " { ( M ` w ) } ) X. ( `' R " { ( M ` w ) } ) ) ) |
71 |
|
relinxp |
|- Rel ( S i^i ( ( `' R " { ( M ` w ) } ) X. ( `' R " { ( M ` w ) } ) ) ) |
72 |
|
vex |
|- z e. _V |
73 |
72
|
eliniseg |
|- ( ( M ` w ) e. _V -> ( z e. ( `' R " { ( M ` w ) } ) <-> z R ( M ` w ) ) ) |
74 |
63 73
|
anbi12d |
|- ( ( M ` w ) e. _V -> ( ( y e. ( `' R " { ( M ` w ) } ) /\ z e. ( `' R " { ( M ` w ) } ) ) <-> ( y R ( M ` w ) /\ z R ( M ` w ) ) ) ) |
75 |
61 74
|
ax-mp |
|- ( ( y e. ( `' R " { ( M ` w ) } ) /\ z e. ( `' R " { ( M ` w ) } ) ) <-> ( y R ( M ` w ) /\ z R ( M ` w ) ) ) |
76 |
55
|
simprd |
|- ( ( ( ( ph /\ w e. dom M ) /\ ( M |` w ) = ( N |` w ) ) /\ y R ( M ` w ) ) -> ( z R ( M ` w ) -> ( y R z <-> y S z ) ) ) |
77 |
76
|
impr |
|- ( ( ( ( ph /\ w e. dom M ) /\ ( M |` w ) = ( N |` w ) ) /\ ( y R ( M ` w ) /\ z R ( M ` w ) ) ) -> ( y R z <-> y S z ) ) |
78 |
75 77
|
sylan2b |
|- ( ( ( ( ph /\ w e. dom M ) /\ ( M |` w ) = ( N |` w ) ) /\ ( y e. ( `' R " { ( M ` w ) } ) /\ z e. ( `' R " { ( M ` w ) } ) ) ) -> ( y R z <-> y S z ) ) |
79 |
78
|
pm5.32da |
|- ( ( ( ph /\ w e. dom M ) /\ ( M |` w ) = ( N |` w ) ) -> ( ( ( y e. ( `' R " { ( M ` w ) } ) /\ z e. ( `' R " { ( M ` w ) } ) ) /\ y R z ) <-> ( ( y e. ( `' R " { ( M ` w ) } ) /\ z e. ( `' R " { ( M ` w ) } ) ) /\ y S z ) ) ) |
80 |
|
df-br |
|- ( y ( R i^i ( ( `' R " { ( M ` w ) } ) X. ( `' R " { ( M ` w ) } ) ) ) z <-> <. y , z >. e. ( R i^i ( ( `' R " { ( M ` w ) } ) X. ( `' R " { ( M ` w ) } ) ) ) ) |
81 |
|
brinxp2 |
|- ( y ( R i^i ( ( `' R " { ( M ` w ) } ) X. ( `' R " { ( M ` w ) } ) ) ) z <-> ( ( y e. ( `' R " { ( M ` w ) } ) /\ z e. ( `' R " { ( M ` w ) } ) ) /\ y R z ) ) |
82 |
80 81
|
bitr3i |
|- ( <. y , z >. e. ( R i^i ( ( `' R " { ( M ` w ) } ) X. ( `' R " { ( M ` w ) } ) ) ) <-> ( ( y e. ( `' R " { ( M ` w ) } ) /\ z e. ( `' R " { ( M ` w ) } ) ) /\ y R z ) ) |
83 |
|
df-br |
|- ( y ( S i^i ( ( `' R " { ( M ` w ) } ) X. ( `' R " { ( M ` w ) } ) ) ) z <-> <. y , z >. e. ( S i^i ( ( `' R " { ( M ` w ) } ) X. ( `' R " { ( M ` w ) } ) ) ) ) |
84 |
|
brinxp2 |
|- ( y ( S i^i ( ( `' R " { ( M ` w ) } ) X. ( `' R " { ( M ` w ) } ) ) ) z <-> ( ( y e. ( `' R " { ( M ` w ) } ) /\ z e. ( `' R " { ( M ` w ) } ) ) /\ y S z ) ) |
85 |
83 84
|
bitr3i |
|- ( <. y , z >. e. ( S i^i ( ( `' R " { ( M ` w ) } ) X. ( `' R " { ( M ` w ) } ) ) ) <-> ( ( y e. ( `' R " { ( M ` w ) } ) /\ z e. ( `' R " { ( M ` w ) } ) ) /\ y S z ) ) |
86 |
79 82 85
|
3bitr4g |
|- ( ( ( ph /\ w e. dom M ) /\ ( M |` w ) = ( N |` w ) ) -> ( <. y , z >. e. ( R i^i ( ( `' R " { ( M ` w ) } ) X. ( `' R " { ( M ` w ) } ) ) ) <-> <. y , z >. e. ( S i^i ( ( `' R " { ( M ` w ) } ) X. ( `' R " { ( M ` w ) } ) ) ) ) ) |
87 |
70 71 86
|
eqrelrdv |
|- ( ( ( ph /\ w e. dom M ) /\ ( M |` w ) = ( N |` w ) ) -> ( R i^i ( ( `' R " { ( M ` w ) } ) X. ( `' R " { ( M ` w ) } ) ) ) = ( S i^i ( ( `' R " { ( M ` w ) } ) X. ( `' R " { ( M ` w ) } ) ) ) ) |
88 |
69
|
sqxpeqd |
|- ( ( ( ph /\ w e. dom M ) /\ ( M |` w ) = ( N |` w ) ) -> ( ( `' R " { ( M ` w ) } ) X. ( `' R " { ( M ` w ) } ) ) = ( ( `' S " { ( N ` w ) } ) X. ( `' S " { ( N ` w ) } ) ) ) |
89 |
88
|
ineq2d |
|- ( ( ( ph /\ w e. dom M ) /\ ( M |` w ) = ( N |` w ) ) -> ( S i^i ( ( `' R " { ( M ` w ) } ) X. ( `' R " { ( M ` w ) } ) ) ) = ( S i^i ( ( `' S " { ( N ` w ) } ) X. ( `' S " { ( N ` w ) } ) ) ) ) |
90 |
87 89
|
eqtrd |
|- ( ( ( ph /\ w e. dom M ) /\ ( M |` w ) = ( N |` w ) ) -> ( R i^i ( ( `' R " { ( M ` w ) } ) X. ( `' R " { ( M ` w ) } ) ) ) = ( S i^i ( ( `' S " { ( N ` w ) } ) X. ( `' S " { ( N ` w ) } ) ) ) ) |
91 |
69 90
|
oveq12d |
|- ( ( ( ph /\ w e. dom M ) /\ ( M |` w ) = ( N |` w ) ) -> ( ( `' R " { ( M ` w ) } ) F ( R i^i ( ( `' R " { ( M ` w ) } ) X. ( `' R " { ( M ` w ) } ) ) ) ) = ( ( `' S " { ( N ` w ) } ) F ( S i^i ( ( `' S " { ( N ` w ) } ) X. ( `' S " { ( N ` w ) } ) ) ) ) ) |
92 |
9
|
ffvelrni |
|- ( w e. dom M -> ( M ` w ) e. X ) |
93 |
92
|
adantl |
|- ( ( ph /\ w e. dom M ) -> ( M ` w ) e. X ) |
94 |
93
|
adantr |
|- ( ( ( ph /\ w e. dom M ) /\ ( M |` w ) = ( N |` w ) ) -> ( M ` w ) e. X ) |
95 |
1 2 4
|
fpwwe2lem3 |
|- ( ( ph /\ ( M ` w ) e. X ) -> ( ( `' R " { ( M ` w ) } ) F ( R i^i ( ( `' R " { ( M ` w ) } ) X. ( `' R " { ( M ` w ) } ) ) ) ) = ( M ` w ) ) |
96 |
47 94 95
|
syl2anc |
|- ( ( ( ph /\ w e. dom M ) /\ ( M |` w ) = ( N |` w ) ) -> ( ( `' R " { ( M ` w ) } ) F ( R i^i ( ( `' R " { ( M ` w ) } ) X. ( `' R " { ( M ` w ) } ) ) ) ) = ( M ` w ) ) |
97 |
12
|
ffvelrni |
|- ( w e. dom N -> ( N ` w ) e. Y ) |
98 |
52 97
|
syl |
|- ( ( ph /\ w e. dom M ) -> ( N ` w ) e. Y ) |
99 |
98
|
adantr |
|- ( ( ( ph /\ w e. dom M ) /\ ( M |` w ) = ( N |` w ) ) -> ( N ` w ) e. Y ) |
100 |
1 2 5
|
fpwwe2lem3 |
|- ( ( ph /\ ( N ` w ) e. Y ) -> ( ( `' S " { ( N ` w ) } ) F ( S i^i ( ( `' S " { ( N ` w ) } ) X. ( `' S " { ( N ` w ) } ) ) ) ) = ( N ` w ) ) |
101 |
47 99 100
|
syl2anc |
|- ( ( ( ph /\ w e. dom M ) /\ ( M |` w ) = ( N |` w ) ) -> ( ( `' S " { ( N ` w ) } ) F ( S i^i ( ( `' S " { ( N ` w ) } ) X. ( `' S " { ( N ` w ) } ) ) ) ) = ( N ` w ) ) |
102 |
91 96 101
|
3eqtr3d |
|- ( ( ( ph /\ w e. dom M ) /\ ( M |` w ) = ( N |` w ) ) -> ( M ` w ) = ( N ` w ) ) |
103 |
102
|
ex |
|- ( ( ph /\ w e. dom M ) -> ( ( M |` w ) = ( N |` w ) -> ( M ` w ) = ( N ` w ) ) ) |
104 |
45 103
|
sylbird |
|- ( ( ph /\ w e. dom M ) -> ( A. y e. w ( M ` y ) = ( N ` y ) -> ( M ` w ) = ( N ` w ) ) ) |
105 |
32 104
|
syld |
|- ( ( ph /\ w e. dom M ) -> ( A. y e. w ( y e. dom M -> ( M ` y ) = ( N ` y ) ) -> ( M ` w ) = ( N ` w ) ) ) |
106 |
105
|
ex |
|- ( ph -> ( w e. dom M -> ( A. y e. w ( y e. dom M -> ( M ` y ) = ( N ` y ) ) -> ( M ` w ) = ( N ` w ) ) ) ) |
107 |
106
|
com23 |
|- ( ph -> ( A. y e. w ( y e. dom M -> ( M ` y ) = ( N ` y ) ) -> ( w e. dom M -> ( M ` w ) = ( N ` w ) ) ) ) |
108 |
107
|
a2i |
|- ( ( ph -> A. y e. w ( y e. dom M -> ( M ` y ) = ( N ` y ) ) ) -> ( ph -> ( w e. dom M -> ( M ` w ) = ( N ` w ) ) ) ) |
109 |
25 108
|
sylbi |
|- ( A. y e. w ( ph -> ( y e. dom M -> ( M ` y ) = ( N ` y ) ) ) -> ( ph -> ( w e. dom M -> ( M ` w ) = ( N ` w ) ) ) ) |
110 |
109
|
a1i |
|- ( w e. On -> ( A. y e. w ( ph -> ( y e. dom M -> ( M ` y ) = ( N ` y ) ) ) -> ( ph -> ( w e. dom M -> ( M ` w ) = ( N ` w ) ) ) ) ) |
111 |
24 110
|
tfis2 |
|- ( w e. On -> ( ph -> ( w e. dom M -> ( M ` w ) = ( N ` w ) ) ) ) |
112 |
111
|
com3l |
|- ( ph -> ( w e. dom M -> ( w e. On -> ( M ` w ) = ( N ` w ) ) ) ) |
113 |
18 112
|
mpdi |
|- ( ph -> ( w e. dom M -> ( M ` w ) = ( N ` w ) ) ) |
114 |
113
|
imp |
|- ( ( ph /\ w e. dom M ) -> ( M ` w ) = ( N ` w ) ) |
115 |
|
fvres |
|- ( w e. dom M -> ( ( N |` dom M ) ` w ) = ( N ` w ) ) |
116 |
115
|
adantl |
|- ( ( ph /\ w e. dom M ) -> ( ( N |` dom M ) ` w ) = ( N ` w ) ) |
117 |
114 116
|
eqtr4d |
|- ( ( ph /\ w e. dom M ) -> ( M ` w ) = ( ( N |` dom M ) ` w ) ) |
118 |
11 15 117
|
eqfnfvd |
|- ( ph -> M = ( N |` dom M ) ) |