| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fpwwe2.1 | 
							 |-  W = { <. x , r >. | ( ( x C_ A /\ r C_ ( x X. x ) ) /\ ( r We x /\ A. y e. x [. ( `' r " { y } ) / u ]. ( u F ( r i^i ( u X. u ) ) ) = y ) ) } | 
						
						
							| 2 | 
							
								
							 | 
							fpwwe2.2 | 
							 |-  ( ph -> A e. V )  | 
						
						
							| 3 | 
							
								
							 | 
							fpwwe2.3 | 
							 |-  ( ( ph /\ ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) ) -> ( x F r ) e. A )  | 
						
						
							| 4 | 
							
								
							 | 
							fpwwe2lem9.4 | 
							 |-  ( ph -> X W R )  | 
						
						
							| 5 | 
							
								
							 | 
							fpwwe2lem9.6 | 
							 |-  ( ph -> Y W S )  | 
						
						
							| 6 | 
							
								
							 | 
							eqid | 
							 |-  OrdIso ( R , X ) = OrdIso ( R , X )  | 
						
						
							| 7 | 
							
								6
							 | 
							oicl | 
							 |-  Ord dom OrdIso ( R , X )  | 
						
						
							| 8 | 
							
								
							 | 
							eqid | 
							 |-  OrdIso ( S , Y ) = OrdIso ( S , Y )  | 
						
						
							| 9 | 
							
								8
							 | 
							oicl | 
							 |-  Ord dom OrdIso ( S , Y )  | 
						
						
							| 10 | 
							
								
							 | 
							ordtri2or2 | 
							 |-  ( ( Ord dom OrdIso ( R , X ) /\ Ord dom OrdIso ( S , Y ) ) -> ( dom OrdIso ( R , X ) C_ dom OrdIso ( S , Y ) \/ dom OrdIso ( S , Y ) C_ dom OrdIso ( R , X ) ) )  | 
						
						
							| 11 | 
							
								7 9 10
							 | 
							mp2an | 
							 |-  ( dom OrdIso ( R , X ) C_ dom OrdIso ( S , Y ) \/ dom OrdIso ( S , Y ) C_ dom OrdIso ( R , X ) )  | 
						
						
							| 12 | 
							
								2
							 | 
							adantr | 
							 |-  ( ( ph /\ dom OrdIso ( R , X ) C_ dom OrdIso ( S , Y ) ) -> A e. V )  | 
						
						
							| 13 | 
							
								3
							 | 
							adantlr | 
							 |-  ( ( ( ph /\ dom OrdIso ( R , X ) C_ dom OrdIso ( S , Y ) ) /\ ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) ) -> ( x F r ) e. A )  | 
						
						
							| 14 | 
							
								4
							 | 
							adantr | 
							 |-  ( ( ph /\ dom OrdIso ( R , X ) C_ dom OrdIso ( S , Y ) ) -> X W R )  | 
						
						
							| 15 | 
							
								5
							 | 
							adantr | 
							 |-  ( ( ph /\ dom OrdIso ( R , X ) C_ dom OrdIso ( S , Y ) ) -> Y W S )  | 
						
						
							| 16 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ph /\ dom OrdIso ( R , X ) C_ dom OrdIso ( S , Y ) ) -> dom OrdIso ( R , X ) C_ dom OrdIso ( S , Y ) )  | 
						
						
							| 17 | 
							
								1 12 13 14 15 6 8 16
							 | 
							fpwwe2lem8 | 
							 |-  ( ( ph /\ dom OrdIso ( R , X ) C_ dom OrdIso ( S , Y ) ) -> ( X C_ Y /\ R = ( S i^i ( Y X. X ) ) ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							ex | 
							 |-  ( ph -> ( dom OrdIso ( R , X ) C_ dom OrdIso ( S , Y ) -> ( X C_ Y /\ R = ( S i^i ( Y X. X ) ) ) ) )  | 
						
						
							| 19 | 
							
								2
							 | 
							adantr | 
							 |-  ( ( ph /\ dom OrdIso ( S , Y ) C_ dom OrdIso ( R , X ) ) -> A e. V )  | 
						
						
							| 20 | 
							
								3
							 | 
							adantlr | 
							 |-  ( ( ( ph /\ dom OrdIso ( S , Y ) C_ dom OrdIso ( R , X ) ) /\ ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) ) -> ( x F r ) e. A )  | 
						
						
							| 21 | 
							
								5
							 | 
							adantr | 
							 |-  ( ( ph /\ dom OrdIso ( S , Y ) C_ dom OrdIso ( R , X ) ) -> Y W S )  | 
						
						
							| 22 | 
							
								4
							 | 
							adantr | 
							 |-  ( ( ph /\ dom OrdIso ( S , Y ) C_ dom OrdIso ( R , X ) ) -> X W R )  | 
						
						
							| 23 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ph /\ dom OrdIso ( S , Y ) C_ dom OrdIso ( R , X ) ) -> dom OrdIso ( S , Y ) C_ dom OrdIso ( R , X ) )  | 
						
						
							| 24 | 
							
								1 19 20 21 22 8 6 23
							 | 
							fpwwe2lem8 | 
							 |-  ( ( ph /\ dom OrdIso ( S , Y ) C_ dom OrdIso ( R , X ) ) -> ( Y C_ X /\ S = ( R i^i ( X X. Y ) ) ) )  | 
						
						
							| 25 | 
							
								24
							 | 
							ex | 
							 |-  ( ph -> ( dom OrdIso ( S , Y ) C_ dom OrdIso ( R , X ) -> ( Y C_ X /\ S = ( R i^i ( X X. Y ) ) ) ) )  | 
						
						
							| 26 | 
							
								18 25
							 | 
							orim12d | 
							 |-  ( ph -> ( ( dom OrdIso ( R , X ) C_ dom OrdIso ( S , Y ) \/ dom OrdIso ( S , Y ) C_ dom OrdIso ( R , X ) ) -> ( ( X C_ Y /\ R = ( S i^i ( Y X. X ) ) ) \/ ( Y C_ X /\ S = ( R i^i ( X X. Y ) ) ) ) ) )  | 
						
						
							| 27 | 
							
								11 26
							 | 
							mpi | 
							 |-  ( ph -> ( ( X C_ Y /\ R = ( S i^i ( Y X. X ) ) ) \/ ( Y C_ X /\ S = ( R i^i ( X X. Y ) ) ) ) )  |