Step |
Hyp |
Ref |
Expression |
1 |
|
fpwwe2.1 |
|- W = { <. x , r >. | ( ( x C_ A /\ r C_ ( x X. x ) ) /\ ( r We x /\ A. y e. x [. ( `' r " { y } ) / u ]. ( u F ( r i^i ( u X. u ) ) ) = y ) ) } |
2 |
|
fpwwe2.2 |
|- ( ph -> A e. V ) |
3 |
|
fpwwe2.3 |
|- ( ( ph /\ ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) ) -> ( x F r ) e. A ) |
4 |
|
fpwwe2lem9.4 |
|- ( ph -> X W R ) |
5 |
|
fpwwe2lem9.6 |
|- ( ph -> Y W S ) |
6 |
|
eqid |
|- OrdIso ( R , X ) = OrdIso ( R , X ) |
7 |
6
|
oicl |
|- Ord dom OrdIso ( R , X ) |
8 |
|
eqid |
|- OrdIso ( S , Y ) = OrdIso ( S , Y ) |
9 |
8
|
oicl |
|- Ord dom OrdIso ( S , Y ) |
10 |
|
ordtri2or2 |
|- ( ( Ord dom OrdIso ( R , X ) /\ Ord dom OrdIso ( S , Y ) ) -> ( dom OrdIso ( R , X ) C_ dom OrdIso ( S , Y ) \/ dom OrdIso ( S , Y ) C_ dom OrdIso ( R , X ) ) ) |
11 |
7 9 10
|
mp2an |
|- ( dom OrdIso ( R , X ) C_ dom OrdIso ( S , Y ) \/ dom OrdIso ( S , Y ) C_ dom OrdIso ( R , X ) ) |
12 |
2
|
adantr |
|- ( ( ph /\ dom OrdIso ( R , X ) C_ dom OrdIso ( S , Y ) ) -> A e. V ) |
13 |
3
|
adantlr |
|- ( ( ( ph /\ dom OrdIso ( R , X ) C_ dom OrdIso ( S , Y ) ) /\ ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) ) -> ( x F r ) e. A ) |
14 |
4
|
adantr |
|- ( ( ph /\ dom OrdIso ( R , X ) C_ dom OrdIso ( S , Y ) ) -> X W R ) |
15 |
5
|
adantr |
|- ( ( ph /\ dom OrdIso ( R , X ) C_ dom OrdIso ( S , Y ) ) -> Y W S ) |
16 |
|
simpr |
|- ( ( ph /\ dom OrdIso ( R , X ) C_ dom OrdIso ( S , Y ) ) -> dom OrdIso ( R , X ) C_ dom OrdIso ( S , Y ) ) |
17 |
1 12 13 14 15 6 8 16
|
fpwwe2lem8 |
|- ( ( ph /\ dom OrdIso ( R , X ) C_ dom OrdIso ( S , Y ) ) -> ( X C_ Y /\ R = ( S i^i ( Y X. X ) ) ) ) |
18 |
17
|
ex |
|- ( ph -> ( dom OrdIso ( R , X ) C_ dom OrdIso ( S , Y ) -> ( X C_ Y /\ R = ( S i^i ( Y X. X ) ) ) ) ) |
19 |
2
|
adantr |
|- ( ( ph /\ dom OrdIso ( S , Y ) C_ dom OrdIso ( R , X ) ) -> A e. V ) |
20 |
3
|
adantlr |
|- ( ( ( ph /\ dom OrdIso ( S , Y ) C_ dom OrdIso ( R , X ) ) /\ ( x C_ A /\ r C_ ( x X. x ) /\ r We x ) ) -> ( x F r ) e. A ) |
21 |
5
|
adantr |
|- ( ( ph /\ dom OrdIso ( S , Y ) C_ dom OrdIso ( R , X ) ) -> Y W S ) |
22 |
4
|
adantr |
|- ( ( ph /\ dom OrdIso ( S , Y ) C_ dom OrdIso ( R , X ) ) -> X W R ) |
23 |
|
simpr |
|- ( ( ph /\ dom OrdIso ( S , Y ) C_ dom OrdIso ( R , X ) ) -> dom OrdIso ( S , Y ) C_ dom OrdIso ( R , X ) ) |
24 |
1 19 20 21 22 8 6 23
|
fpwwe2lem8 |
|- ( ( ph /\ dom OrdIso ( S , Y ) C_ dom OrdIso ( R , X ) ) -> ( Y C_ X /\ S = ( R i^i ( X X. Y ) ) ) ) |
25 |
24
|
ex |
|- ( ph -> ( dom OrdIso ( S , Y ) C_ dom OrdIso ( R , X ) -> ( Y C_ X /\ S = ( R i^i ( X X. Y ) ) ) ) ) |
26 |
18 25
|
orim12d |
|- ( ph -> ( ( dom OrdIso ( R , X ) C_ dom OrdIso ( S , Y ) \/ dom OrdIso ( S , Y ) C_ dom OrdIso ( R , X ) ) -> ( ( X C_ Y /\ R = ( S i^i ( Y X. X ) ) ) \/ ( Y C_ X /\ S = ( R i^i ( X X. Y ) ) ) ) ) ) |
27 |
11 26
|
mpi |
|- ( ph -> ( ( X C_ Y /\ R = ( S i^i ( Y X. X ) ) ) \/ ( Y C_ X /\ S = ( R i^i ( X X. Y ) ) ) ) ) |