| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fpwwe.1 |
|- W = { <. x , r >. | ( ( x C_ A /\ r C_ ( x X. x ) ) /\ ( r We x /\ A. y e. x ( F ` ( `' r " { y } ) ) = y ) ) } |
| 2 |
|
simpl |
|- ( ( x = a /\ r = s ) -> x = a ) |
| 3 |
2
|
sseq1d |
|- ( ( x = a /\ r = s ) -> ( x C_ A <-> a C_ A ) ) |
| 4 |
|
simpr |
|- ( ( x = a /\ r = s ) -> r = s ) |
| 5 |
2
|
sqxpeqd |
|- ( ( x = a /\ r = s ) -> ( x X. x ) = ( a X. a ) ) |
| 6 |
4 5
|
sseq12d |
|- ( ( x = a /\ r = s ) -> ( r C_ ( x X. x ) <-> s C_ ( a X. a ) ) ) |
| 7 |
3 6
|
anbi12d |
|- ( ( x = a /\ r = s ) -> ( ( x C_ A /\ r C_ ( x X. x ) ) <-> ( a C_ A /\ s C_ ( a X. a ) ) ) ) |
| 8 |
4 2
|
weeq12d |
|- ( ( x = a /\ r = s ) -> ( r We x <-> s We a ) ) |
| 9 |
|
sneq |
|- ( y = z -> { y } = { z } ) |
| 10 |
9
|
imaeq2d |
|- ( y = z -> ( `' r " { y } ) = ( `' r " { z } ) ) |
| 11 |
10
|
fveq2d |
|- ( y = z -> ( F ` ( `' r " { y } ) ) = ( F ` ( `' r " { z } ) ) ) |
| 12 |
|
id |
|- ( y = z -> y = z ) |
| 13 |
11 12
|
eqeq12d |
|- ( y = z -> ( ( F ` ( `' r " { y } ) ) = y <-> ( F ` ( `' r " { z } ) ) = z ) ) |
| 14 |
13
|
cbvralvw |
|- ( A. y e. x ( F ` ( `' r " { y } ) ) = y <-> A. z e. x ( F ` ( `' r " { z } ) ) = z ) |
| 15 |
4
|
cnveqd |
|- ( ( x = a /\ r = s ) -> `' r = `' s ) |
| 16 |
15
|
imaeq1d |
|- ( ( x = a /\ r = s ) -> ( `' r " { z } ) = ( `' s " { z } ) ) |
| 17 |
16
|
fveqeq2d |
|- ( ( x = a /\ r = s ) -> ( ( F ` ( `' r " { z } ) ) = z <-> ( F ` ( `' s " { z } ) ) = z ) ) |
| 18 |
2 17
|
raleqbidv |
|- ( ( x = a /\ r = s ) -> ( A. z e. x ( F ` ( `' r " { z } ) ) = z <-> A. z e. a ( F ` ( `' s " { z } ) ) = z ) ) |
| 19 |
14 18
|
bitrid |
|- ( ( x = a /\ r = s ) -> ( A. y e. x ( F ` ( `' r " { y } ) ) = y <-> A. z e. a ( F ` ( `' s " { z } ) ) = z ) ) |
| 20 |
8 19
|
anbi12d |
|- ( ( x = a /\ r = s ) -> ( ( r We x /\ A. y e. x ( F ` ( `' r " { y } ) ) = y ) <-> ( s We a /\ A. z e. a ( F ` ( `' s " { z } ) ) = z ) ) ) |
| 21 |
7 20
|
anbi12d |
|- ( ( x = a /\ r = s ) -> ( ( ( x C_ A /\ r C_ ( x X. x ) ) /\ ( r We x /\ A. y e. x ( F ` ( `' r " { y } ) ) = y ) ) <-> ( ( a C_ A /\ s C_ ( a X. a ) ) /\ ( s We a /\ A. z e. a ( F ` ( `' s " { z } ) ) = z ) ) ) ) |
| 22 |
21
|
cbvopabv |
|- { <. x , r >. | ( ( x C_ A /\ r C_ ( x X. x ) ) /\ ( r We x /\ A. y e. x ( F ` ( `' r " { y } ) ) = y ) ) } = { <. a , s >. | ( ( a C_ A /\ s C_ ( a X. a ) ) /\ ( s We a /\ A. z e. a ( F ` ( `' s " { z } ) ) = z ) ) } |
| 23 |
1 22
|
eqtri |
|- W = { <. a , s >. | ( ( a C_ A /\ s C_ ( a X. a ) ) /\ ( s We a /\ A. z e. a ( F ` ( `' s " { z } ) ) = z ) ) } |