Description: Any relation is well-founded on the empty set. (Contributed by NM, 17-Sep-1993)
Ref | Expression | ||
---|---|---|---|
Assertion | fr0 | |- R Fr (/) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffr2 | |- ( R Fr (/) <-> A. x ( ( x C_ (/) /\ x =/= (/) ) -> E. y e. x { z e. x | z R y } = (/) ) ) |
|
2 | ss0 | |- ( x C_ (/) -> x = (/) ) |
|
3 | 2 | a1d | |- ( x C_ (/) -> ( -. E. y e. x { z e. x | z R y } = (/) -> x = (/) ) ) |
4 | 3 | necon1ad | |- ( x C_ (/) -> ( x =/= (/) -> E. y e. x { z e. x | z R y } = (/) ) ) |
5 | 4 | imp | |- ( ( x C_ (/) /\ x =/= (/) ) -> E. y e. x { z e. x | z R y } = (/) ) |
6 | 1 5 | mpgbir | |- R Fr (/) |