Metamath Proof Explorer


Theorem fr0g

Description: The initial value resulting from finite recursive definition generation. (Contributed by NM, 15-Oct-1996)

Ref Expression
Assertion fr0g
|- ( A e. B -> ( ( rec ( F , A ) |` _om ) ` (/) ) = A )

Proof

Step Hyp Ref Expression
1 peano1
 |-  (/) e. _om
2 fvres
 |-  ( (/) e. _om -> ( ( rec ( F , A ) |` _om ) ` (/) ) = ( rec ( F , A ) ` (/) ) )
3 1 2 ax-mp
 |-  ( ( rec ( F , A ) |` _om ) ` (/) ) = ( rec ( F , A ) ` (/) )
4 rdg0g
 |-  ( A e. B -> ( rec ( F , A ) ` (/) ) = A )
5 3 4 eqtrid
 |-  ( A e. B -> ( ( rec ( F , A ) |` _om ) ` (/) ) = A )