Step |
Hyp |
Ref |
Expression |
1 |
|
fracbas.1 |
|- B = ( Base ` R ) |
2 |
|
fracbas.2 |
|- E = ( RLReg ` R ) |
3 |
|
fracbas.3 |
|- F = ( Frac ` R ) |
4 |
|
fracbas.4 |
|- .~ = ( R ~RL E ) |
5 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
6 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
7 |
|
eqid |
|- ( -g ` R ) = ( -g ` R ) |
8 |
|
eqid |
|- ( B X. E ) = ( B X. E ) |
9 |
|
fracval |
|- ( Frac ` R ) = ( R RLocal ( RLReg ` R ) ) |
10 |
2
|
oveq2i |
|- ( R RLocal E ) = ( R RLocal ( RLReg ` R ) ) |
11 |
9 3 10
|
3eqtr4i |
|- F = ( R RLocal E ) |
12 |
|
id |
|- ( R e. _V -> R e. _V ) |
13 |
2 1
|
rrgss |
|- E C_ B |
14 |
13
|
a1i |
|- ( R e. _V -> E C_ B ) |
15 |
1 5 6 7 8 11 4 12 14
|
rlocbas |
|- ( R e. _V -> ( ( B X. E ) /. .~ ) = ( Base ` F ) ) |
16 |
|
0qs |
|- ( (/) /. .~ ) = (/) |
17 |
|
fvprc |
|- ( -. R e. _V -> ( Base ` R ) = (/) ) |
18 |
1 17
|
eqtrid |
|- ( -. R e. _V -> B = (/) ) |
19 |
18
|
xpeq1d |
|- ( -. R e. _V -> ( B X. E ) = ( (/) X. E ) ) |
20 |
|
0xp |
|- ( (/) X. E ) = (/) |
21 |
19 20
|
eqtrdi |
|- ( -. R e. _V -> ( B X. E ) = (/) ) |
22 |
21
|
qseq1d |
|- ( -. R e. _V -> ( ( B X. E ) /. .~ ) = ( (/) /. .~ ) ) |
23 |
|
fvprc |
|- ( -. R e. _V -> ( Frac ` R ) = (/) ) |
24 |
3 23
|
eqtrid |
|- ( -. R e. _V -> F = (/) ) |
25 |
24
|
fveq2d |
|- ( -. R e. _V -> ( Base ` F ) = ( Base ` (/) ) ) |
26 |
|
base0 |
|- (/) = ( Base ` (/) ) |
27 |
25 26
|
eqtr4di |
|- ( -. R e. _V -> ( Base ` F ) = (/) ) |
28 |
16 22 27
|
3eqtr4a |
|- ( -. R e. _V -> ( ( B X. E ) /. .~ ) = ( Base ` F ) ) |
29 |
15 28
|
pm2.61i |
|- ( ( B X. E ) /. .~ ) = ( Base ` F ) |