Metamath Proof Explorer


Theorem fracbas

Description: The base of the field of fractions. (Contributed by Thierry Arnoux, 10-May-2025)

Ref Expression
Hypotheses fracbas.1
|- B = ( Base ` R )
fracbas.2
|- E = ( RLReg ` R )
fracbas.3
|- F = ( Frac ` R )
fracbas.4
|- .~ = ( R ~RL E )
Assertion fracbas
|- ( ( B X. E ) /. .~ ) = ( Base ` F )

Proof

Step Hyp Ref Expression
1 fracbas.1
 |-  B = ( Base ` R )
2 fracbas.2
 |-  E = ( RLReg ` R )
3 fracbas.3
 |-  F = ( Frac ` R )
4 fracbas.4
 |-  .~ = ( R ~RL E )
5 eqid
 |-  ( 0g ` R ) = ( 0g ` R )
6 eqid
 |-  ( .r ` R ) = ( .r ` R )
7 eqid
 |-  ( -g ` R ) = ( -g ` R )
8 eqid
 |-  ( B X. E ) = ( B X. E )
9 fracval
 |-  ( Frac ` R ) = ( R RLocal ( RLReg ` R ) )
10 2 oveq2i
 |-  ( R RLocal E ) = ( R RLocal ( RLReg ` R ) )
11 9 3 10 3eqtr4i
 |-  F = ( R RLocal E )
12 id
 |-  ( R e. _V -> R e. _V )
13 2 1 rrgss
 |-  E C_ B
14 13 a1i
 |-  ( R e. _V -> E C_ B )
15 1 5 6 7 8 11 4 12 14 rlocbas
 |-  ( R e. _V -> ( ( B X. E ) /. .~ ) = ( Base ` F ) )
16 0qs
 |-  ( (/) /. .~ ) = (/)
17 fvprc
 |-  ( -. R e. _V -> ( Base ` R ) = (/) )
18 1 17 eqtrid
 |-  ( -. R e. _V -> B = (/) )
19 18 xpeq1d
 |-  ( -. R e. _V -> ( B X. E ) = ( (/) X. E ) )
20 0xp
 |-  ( (/) X. E ) = (/)
21 19 20 eqtrdi
 |-  ( -. R e. _V -> ( B X. E ) = (/) )
22 21 qseq1d
 |-  ( -. R e. _V -> ( ( B X. E ) /. .~ ) = ( (/) /. .~ ) )
23 fvprc
 |-  ( -. R e. _V -> ( Frac ` R ) = (/) )
24 3 23 eqtrid
 |-  ( -. R e. _V -> F = (/) )
25 24 fveq2d
 |-  ( -. R e. _V -> ( Base ` F ) = ( Base ` (/) ) )
26 base0
 |-  (/) = ( Base ` (/) )
27 25 26 eqtr4di
 |-  ( -. R e. _V -> ( Base ` F ) = (/) )
28 16 22 27 3eqtr4a
 |-  ( -. R e. _V -> ( ( B X. E ) /. .~ ) = ( Base ` F ) )
29 15 28 pm2.61i
 |-  ( ( B X. E ) /. .~ ) = ( Base ` F )