Metamath Proof Explorer


Theorem fracf1

Description: The embedding of a commutative ring R into its field of fractions. (Contributed by Thierry Arnoux, 10-May-2025)

Ref Expression
Hypotheses fracf1.1
|- B = ( Base ` R )
fracf1.2
|- E = ( RLReg ` R )
fracf1.3
|- .1. = ( 1r ` R )
fracf1.4
|- ( ph -> R e. CRing )
fracf1.5
|- .~ = ( R ~RL E )
fracf1.6
|- F = ( x e. B |-> [ <. x , .1. >. ] .~ )
Assertion fracf1
|- ( ph -> ( F : B -1-1-> ( ( B X. E ) /. .~ ) /\ F e. ( R RingHom ( Frac ` R ) ) ) )

Proof

Step Hyp Ref Expression
1 fracf1.1
 |-  B = ( Base ` R )
2 fracf1.2
 |-  E = ( RLReg ` R )
3 fracf1.3
 |-  .1. = ( 1r ` R )
4 fracf1.4
 |-  ( ph -> R e. CRing )
5 fracf1.5
 |-  .~ = ( R ~RL E )
6 fracf1.6
 |-  F = ( x e. B |-> [ <. x , .1. >. ] .~ )
7 fracval
 |-  ( Frac ` R ) = ( R RLocal ( RLReg ` R ) )
8 2 oveq2i
 |-  ( R RLocal E ) = ( R RLocal ( RLReg ` R ) )
9 7 8 eqtr4i
 |-  ( Frac ` R ) = ( R RLocal E )
10 eqid
 |-  ( mulGrp ` R ) = ( mulGrp ` R )
11 4 crngringd
 |-  ( ph -> R e. Ring )
12 2 10 11 rrgsubm
 |-  ( ph -> E e. ( SubMnd ` ( mulGrp ` R ) ) )
13 ssidd
 |-  ( ph -> E C_ E )
14 13 2 sseqtrdi
 |-  ( ph -> E C_ ( RLReg ` R ) )
15 1 3 9 5 6 4 12 14 rlocf1
 |-  ( ph -> ( F : B -1-1-> ( ( B X. E ) /. .~ ) /\ F e. ( R RingHom ( Frac ` R ) ) ) )