| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fraclt1 |  |-  ( A e. RR -> ( A - ( |_ ` A ) ) < 1 ) | 
						
							| 2 |  | reflcl |  |-  ( A e. RR -> ( |_ ` A ) e. RR ) | 
						
							| 3 |  | resubcl |  |-  ( ( A e. RR /\ ( |_ ` A ) e. RR ) -> ( A - ( |_ ` A ) ) e. RR ) | 
						
							| 4 | 2 3 | mpdan |  |-  ( A e. RR -> ( A - ( |_ ` A ) ) e. RR ) | 
						
							| 5 |  | 1re |  |-  1 e. RR | 
						
							| 6 |  | ltle |  |-  ( ( ( A - ( |_ ` A ) ) e. RR /\ 1 e. RR ) -> ( ( A - ( |_ ` A ) ) < 1 -> ( A - ( |_ ` A ) ) <_ 1 ) ) | 
						
							| 7 | 4 5 6 | sylancl |  |-  ( A e. RR -> ( ( A - ( |_ ` A ) ) < 1 -> ( A - ( |_ ` A ) ) <_ 1 ) ) | 
						
							| 8 | 1 7 | mpd |  |-  ( A e. RR -> ( A - ( |_ ` A ) ) <_ 1 ) |