Step |
Hyp |
Ref |
Expression |
1 |
|
df-frac |
|- Frac = ( r e. _V |-> ( r RLocal ( RLReg ` r ) ) ) |
2 |
|
id |
|- ( r = R -> r = R ) |
3 |
|
fveq2 |
|- ( r = R -> ( RLReg ` r ) = ( RLReg ` R ) ) |
4 |
2 3
|
oveq12d |
|- ( r = R -> ( r RLocal ( RLReg ` r ) ) = ( R RLocal ( RLReg ` R ) ) ) |
5 |
4
|
adantl |
|- ( ( R e. _V /\ r = R ) -> ( r RLocal ( RLReg ` r ) ) = ( R RLocal ( RLReg ` R ) ) ) |
6 |
|
id |
|- ( R e. _V -> R e. _V ) |
7 |
|
ovexd |
|- ( R e. _V -> ( R RLocal ( RLReg ` R ) ) e. _V ) |
8 |
1 5 6 7
|
fvmptd2 |
|- ( R e. _V -> ( Frac ` R ) = ( R RLocal ( RLReg ` R ) ) ) |
9 |
|
fvprc |
|- ( -. R e. _V -> ( Frac ` R ) = (/) ) |
10 |
|
reldmrloc |
|- Rel dom RLocal |
11 |
10
|
ovprc1 |
|- ( -. R e. _V -> ( R RLocal ( RLReg ` R ) ) = (/) ) |
12 |
9 11
|
eqtr4d |
|- ( -. R e. _V -> ( Frac ` R ) = ( R RLocal ( RLReg ` R ) ) ) |
13 |
8 12
|
pm2.61i |
|- ( Frac ` R ) = ( R RLocal ( RLReg ` R ) ) |