Metamath Proof Explorer


Theorem freld

Description: A mapping is a relation. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypothesis freld.1
|- ( ph -> F : A --> B )
Assertion freld
|- ( ph -> Rel F )

Proof

Step Hyp Ref Expression
1 freld.1
 |-  ( ph -> F : A --> B )
2 frel
 |-  ( F : A --> B -> Rel F )
3 1 2 syl
 |-  ( ph -> Rel F )