Step |
Hyp |
Ref |
Expression |
1 |
|
uncom |
|- ( F u. G ) = ( G u. F ) |
2 |
1
|
reseq1i |
|- ( ( F u. G ) |` A ) = ( ( G u. F ) |` A ) |
3 |
|
incom |
|- ( A i^i B ) = ( B i^i A ) |
4 |
3
|
reseq2i |
|- ( F |` ( A i^i B ) ) = ( F |` ( B i^i A ) ) |
5 |
3
|
reseq2i |
|- ( G |` ( A i^i B ) ) = ( G |` ( B i^i A ) ) |
6 |
4 5
|
eqeq12i |
|- ( ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) <-> ( F |` ( B i^i A ) ) = ( G |` ( B i^i A ) ) ) |
7 |
|
eqcom |
|- ( ( F |` ( B i^i A ) ) = ( G |` ( B i^i A ) ) <-> ( G |` ( B i^i A ) ) = ( F |` ( B i^i A ) ) ) |
8 |
6 7
|
bitri |
|- ( ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) <-> ( G |` ( B i^i A ) ) = ( F |` ( B i^i A ) ) ) |
9 |
|
fresaunres2 |
|- ( ( G : B --> C /\ F : A --> C /\ ( G |` ( B i^i A ) ) = ( F |` ( B i^i A ) ) ) -> ( ( G u. F ) |` A ) = F ) |
10 |
9
|
3com12 |
|- ( ( F : A --> C /\ G : B --> C /\ ( G |` ( B i^i A ) ) = ( F |` ( B i^i A ) ) ) -> ( ( G u. F ) |` A ) = F ) |
11 |
8 10
|
syl3an3b |
|- ( ( F : A --> C /\ G : B --> C /\ ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) ) -> ( ( G u. F ) |` A ) = F ) |
12 |
2 11
|
eqtrid |
|- ( ( F : A --> C /\ G : B --> C /\ ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) ) -> ( ( F u. G ) |` A ) = F ) |