Step |
Hyp |
Ref |
Expression |
1 |
|
ffn |
|- ( F : A --> C -> F Fn A ) |
2 |
|
ffn |
|- ( G : B --> C -> G Fn B ) |
3 |
|
id |
|- ( ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) -> ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) ) |
4 |
|
resasplit |
|- ( ( F Fn A /\ G Fn B /\ ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) ) -> ( F u. G ) = ( ( F |` ( A i^i B ) ) u. ( ( F |` ( A \ B ) ) u. ( G |` ( B \ A ) ) ) ) ) |
5 |
1 2 3 4
|
syl3an |
|- ( ( F : A --> C /\ G : B --> C /\ ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) ) -> ( F u. G ) = ( ( F |` ( A i^i B ) ) u. ( ( F |` ( A \ B ) ) u. ( G |` ( B \ A ) ) ) ) ) |
6 |
5
|
reseq1d |
|- ( ( F : A --> C /\ G : B --> C /\ ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) ) -> ( ( F u. G ) |` B ) = ( ( ( F |` ( A i^i B ) ) u. ( ( F |` ( A \ B ) ) u. ( G |` ( B \ A ) ) ) ) |` B ) ) |
7 |
|
resundir |
|- ( ( ( F |` ( A i^i B ) ) u. ( ( F |` ( A \ B ) ) u. ( G |` ( B \ A ) ) ) ) |` B ) = ( ( ( F |` ( A i^i B ) ) |` B ) u. ( ( ( F |` ( A \ B ) ) u. ( G |` ( B \ A ) ) ) |` B ) ) |
8 |
|
inss2 |
|- ( A i^i B ) C_ B |
9 |
|
resabs2 |
|- ( ( A i^i B ) C_ B -> ( ( F |` ( A i^i B ) ) |` B ) = ( F |` ( A i^i B ) ) ) |
10 |
8 9
|
ax-mp |
|- ( ( F |` ( A i^i B ) ) |` B ) = ( F |` ( A i^i B ) ) |
11 |
|
resundir |
|- ( ( ( F |` ( A \ B ) ) u. ( G |` ( B \ A ) ) ) |` B ) = ( ( ( F |` ( A \ B ) ) |` B ) u. ( ( G |` ( B \ A ) ) |` B ) ) |
12 |
10 11
|
uneq12i |
|- ( ( ( F |` ( A i^i B ) ) |` B ) u. ( ( ( F |` ( A \ B ) ) u. ( G |` ( B \ A ) ) ) |` B ) ) = ( ( F |` ( A i^i B ) ) u. ( ( ( F |` ( A \ B ) ) |` B ) u. ( ( G |` ( B \ A ) ) |` B ) ) ) |
13 |
|
dmres |
|- dom ( ( F |` ( A \ B ) ) |` B ) = ( B i^i dom ( F |` ( A \ B ) ) ) |
14 |
|
dmres |
|- dom ( F |` ( A \ B ) ) = ( ( A \ B ) i^i dom F ) |
15 |
14
|
ineq2i |
|- ( B i^i dom ( F |` ( A \ B ) ) ) = ( B i^i ( ( A \ B ) i^i dom F ) ) |
16 |
|
disjdif |
|- ( B i^i ( A \ B ) ) = (/) |
17 |
16
|
ineq1i |
|- ( ( B i^i ( A \ B ) ) i^i dom F ) = ( (/) i^i dom F ) |
18 |
|
inass |
|- ( ( B i^i ( A \ B ) ) i^i dom F ) = ( B i^i ( ( A \ B ) i^i dom F ) ) |
19 |
|
0in |
|- ( (/) i^i dom F ) = (/) |
20 |
17 18 19
|
3eqtr3i |
|- ( B i^i ( ( A \ B ) i^i dom F ) ) = (/) |
21 |
15 20
|
eqtri |
|- ( B i^i dom ( F |` ( A \ B ) ) ) = (/) |
22 |
13 21
|
eqtri |
|- dom ( ( F |` ( A \ B ) ) |` B ) = (/) |
23 |
|
relres |
|- Rel ( ( F |` ( A \ B ) ) |` B ) |
24 |
|
reldm0 |
|- ( Rel ( ( F |` ( A \ B ) ) |` B ) -> ( ( ( F |` ( A \ B ) ) |` B ) = (/) <-> dom ( ( F |` ( A \ B ) ) |` B ) = (/) ) ) |
25 |
23 24
|
ax-mp |
|- ( ( ( F |` ( A \ B ) ) |` B ) = (/) <-> dom ( ( F |` ( A \ B ) ) |` B ) = (/) ) |
26 |
22 25
|
mpbir |
|- ( ( F |` ( A \ B ) ) |` B ) = (/) |
27 |
|
difss |
|- ( B \ A ) C_ B |
28 |
|
resabs2 |
|- ( ( B \ A ) C_ B -> ( ( G |` ( B \ A ) ) |` B ) = ( G |` ( B \ A ) ) ) |
29 |
27 28
|
ax-mp |
|- ( ( G |` ( B \ A ) ) |` B ) = ( G |` ( B \ A ) ) |
30 |
26 29
|
uneq12i |
|- ( ( ( F |` ( A \ B ) ) |` B ) u. ( ( G |` ( B \ A ) ) |` B ) ) = ( (/) u. ( G |` ( B \ A ) ) ) |
31 |
30
|
uneq2i |
|- ( ( F |` ( A i^i B ) ) u. ( ( ( F |` ( A \ B ) ) |` B ) u. ( ( G |` ( B \ A ) ) |` B ) ) ) = ( ( F |` ( A i^i B ) ) u. ( (/) u. ( G |` ( B \ A ) ) ) ) |
32 |
|
simp3 |
|- ( ( F : A --> C /\ G : B --> C /\ ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) ) -> ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) ) |
33 |
32
|
uneq1d |
|- ( ( F : A --> C /\ G : B --> C /\ ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) ) -> ( ( F |` ( A i^i B ) ) u. ( (/) u. ( G |` ( B \ A ) ) ) ) = ( ( G |` ( A i^i B ) ) u. ( (/) u. ( G |` ( B \ A ) ) ) ) ) |
34 |
|
uncom |
|- ( (/) u. ( G |` ( B \ A ) ) ) = ( ( G |` ( B \ A ) ) u. (/) ) |
35 |
|
un0 |
|- ( ( G |` ( B \ A ) ) u. (/) ) = ( G |` ( B \ A ) ) |
36 |
34 35
|
eqtri |
|- ( (/) u. ( G |` ( B \ A ) ) ) = ( G |` ( B \ A ) ) |
37 |
36
|
uneq2i |
|- ( ( G |` ( A i^i B ) ) u. ( (/) u. ( G |` ( B \ A ) ) ) ) = ( ( G |` ( A i^i B ) ) u. ( G |` ( B \ A ) ) ) |
38 |
|
resundi |
|- ( G |` ( ( A i^i B ) u. ( B \ A ) ) ) = ( ( G |` ( A i^i B ) ) u. ( G |` ( B \ A ) ) ) |
39 |
|
incom |
|- ( A i^i B ) = ( B i^i A ) |
40 |
39
|
uneq1i |
|- ( ( A i^i B ) u. ( B \ A ) ) = ( ( B i^i A ) u. ( B \ A ) ) |
41 |
|
inundif |
|- ( ( B i^i A ) u. ( B \ A ) ) = B |
42 |
40 41
|
eqtri |
|- ( ( A i^i B ) u. ( B \ A ) ) = B |
43 |
42
|
reseq2i |
|- ( G |` ( ( A i^i B ) u. ( B \ A ) ) ) = ( G |` B ) |
44 |
|
fnresdm |
|- ( G Fn B -> ( G |` B ) = G ) |
45 |
2 44
|
syl |
|- ( G : B --> C -> ( G |` B ) = G ) |
46 |
45
|
adantl |
|- ( ( F : A --> C /\ G : B --> C ) -> ( G |` B ) = G ) |
47 |
43 46
|
eqtrid |
|- ( ( F : A --> C /\ G : B --> C ) -> ( G |` ( ( A i^i B ) u. ( B \ A ) ) ) = G ) |
48 |
38 47
|
eqtr3id |
|- ( ( F : A --> C /\ G : B --> C ) -> ( ( G |` ( A i^i B ) ) u. ( G |` ( B \ A ) ) ) = G ) |
49 |
37 48
|
eqtrid |
|- ( ( F : A --> C /\ G : B --> C ) -> ( ( G |` ( A i^i B ) ) u. ( (/) u. ( G |` ( B \ A ) ) ) ) = G ) |
50 |
49
|
3adant3 |
|- ( ( F : A --> C /\ G : B --> C /\ ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) ) -> ( ( G |` ( A i^i B ) ) u. ( (/) u. ( G |` ( B \ A ) ) ) ) = G ) |
51 |
33 50
|
eqtrd |
|- ( ( F : A --> C /\ G : B --> C /\ ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) ) -> ( ( F |` ( A i^i B ) ) u. ( (/) u. ( G |` ( B \ A ) ) ) ) = G ) |
52 |
31 51
|
eqtrid |
|- ( ( F : A --> C /\ G : B --> C /\ ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) ) -> ( ( F |` ( A i^i B ) ) u. ( ( ( F |` ( A \ B ) ) |` B ) u. ( ( G |` ( B \ A ) ) |` B ) ) ) = G ) |
53 |
12 52
|
eqtrid |
|- ( ( F : A --> C /\ G : B --> C /\ ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) ) -> ( ( ( F |` ( A i^i B ) ) |` B ) u. ( ( ( F |` ( A \ B ) ) u. ( G |` ( B \ A ) ) ) |` B ) ) = G ) |
54 |
7 53
|
eqtrid |
|- ( ( F : A --> C /\ G : B --> C /\ ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) ) -> ( ( ( F |` ( A i^i B ) ) u. ( ( F |` ( A \ B ) ) u. ( G |` ( B \ A ) ) ) ) |` B ) = G ) |
55 |
6 54
|
eqtrd |
|- ( ( F : A --> C /\ G : B --> C /\ ( F |` ( A i^i B ) ) = ( G |` ( A i^i B ) ) ) -> ( ( F u. G ) |` B ) = G ) |