| Step | Hyp | Ref | Expression | 
						
							| 1 |  | funfn |  |-  ( Fun ( `' F |` C ) <-> ( `' F |` C ) Fn dom ( `' F |` C ) ) | 
						
							| 2 | 1 | biimpi |  |-  ( Fun ( `' F |` C ) -> ( `' F |` C ) Fn dom ( `' F |` C ) ) | 
						
							| 3 | 2 | 3ad2ant3 |  |-  ( ( Fun F /\ C C_ ran F /\ Fun ( `' F |` C ) ) -> ( `' F |` C ) Fn dom ( `' F |` C ) ) | 
						
							| 4 |  | simp2 |  |-  ( ( Fun F /\ C C_ ran F /\ Fun ( `' F |` C ) ) -> C C_ ran F ) | 
						
							| 5 |  | df-rn |  |-  ran F = dom `' F | 
						
							| 6 | 4 5 | sseqtrdi |  |-  ( ( Fun F /\ C C_ ran F /\ Fun ( `' F |` C ) ) -> C C_ dom `' F ) | 
						
							| 7 |  | ssdmres |  |-  ( C C_ dom `' F <-> dom ( `' F |` C ) = C ) | 
						
							| 8 | 6 7 | sylib |  |-  ( ( Fun F /\ C C_ ran F /\ Fun ( `' F |` C ) ) -> dom ( `' F |` C ) = C ) | 
						
							| 9 | 8 | fneq2d |  |-  ( ( Fun F /\ C C_ ran F /\ Fun ( `' F |` C ) ) -> ( ( `' F |` C ) Fn dom ( `' F |` C ) <-> ( `' F |` C ) Fn C ) ) | 
						
							| 10 | 3 9 | mpbid |  |-  ( ( Fun F /\ C C_ ran F /\ Fun ( `' F |` C ) ) -> ( `' F |` C ) Fn C ) | 
						
							| 11 |  | simp1 |  |-  ( ( Fun F /\ C C_ ran F /\ Fun ( `' F |` C ) ) -> Fun F ) | 
						
							| 12 | 11 | funresd |  |-  ( ( Fun F /\ C C_ ran F /\ Fun ( `' F |` C ) ) -> Fun ( F |` ( `' F " C ) ) ) | 
						
							| 13 |  | funcnvres2 |  |-  ( Fun F -> `' ( `' F |` C ) = ( F |` ( `' F " C ) ) ) | 
						
							| 14 | 11 13 | syl |  |-  ( ( Fun F /\ C C_ ran F /\ Fun ( `' F |` C ) ) -> `' ( `' F |` C ) = ( F |` ( `' F " C ) ) ) | 
						
							| 15 | 14 | funeqd |  |-  ( ( Fun F /\ C C_ ran F /\ Fun ( `' F |` C ) ) -> ( Fun `' ( `' F |` C ) <-> Fun ( F |` ( `' F " C ) ) ) ) | 
						
							| 16 | 12 15 | mpbird |  |-  ( ( Fun F /\ C C_ ran F /\ Fun ( `' F |` C ) ) -> Fun `' ( `' F |` C ) ) | 
						
							| 17 |  | df-ima |  |-  ( `' F " C ) = ran ( `' F |` C ) | 
						
							| 18 | 17 | eqcomi |  |-  ran ( `' F |` C ) = ( `' F " C ) | 
						
							| 19 | 18 | a1i |  |-  ( ( Fun F /\ C C_ ran F /\ Fun ( `' F |` C ) ) -> ran ( `' F |` C ) = ( `' F " C ) ) | 
						
							| 20 |  | dff1o2 |  |-  ( ( `' F |` C ) : C -1-1-onto-> ( `' F " C ) <-> ( ( `' F |` C ) Fn C /\ Fun `' ( `' F |` C ) /\ ran ( `' F |` C ) = ( `' F " C ) ) ) | 
						
							| 21 | 10 16 19 20 | syl3anbrc |  |-  ( ( Fun F /\ C C_ ran F /\ Fun ( `' F |` C ) ) -> ( `' F |` C ) : C -1-1-onto-> ( `' F " C ) ) | 
						
							| 22 |  | f1ocnv |  |-  ( ( `' F |` C ) : C -1-1-onto-> ( `' F " C ) -> `' ( `' F |` C ) : ( `' F " C ) -1-1-onto-> C ) | 
						
							| 23 | 21 22 | syl |  |-  ( ( Fun F /\ C C_ ran F /\ Fun ( `' F |` C ) ) -> `' ( `' F |` C ) : ( `' F " C ) -1-1-onto-> C ) | 
						
							| 24 |  | f1oeq1 |  |-  ( `' ( `' F |` C ) = ( F |` ( `' F " C ) ) -> ( `' ( `' F |` C ) : ( `' F " C ) -1-1-onto-> C <-> ( F |` ( `' F " C ) ) : ( `' F " C ) -1-1-onto-> C ) ) | 
						
							| 25 | 11 13 24 | 3syl |  |-  ( ( Fun F /\ C C_ ran F /\ Fun ( `' F |` C ) ) -> ( `' ( `' F |` C ) : ( `' F " C ) -1-1-onto-> C <-> ( F |` ( `' F " C ) ) : ( `' F " C ) -1-1-onto-> C ) ) | 
						
							| 26 | 23 25 | mpbid |  |-  ( ( Fun F /\ C C_ ran F /\ Fun ( `' F |` C ) ) -> ( F |` ( `' F " C ) ) : ( `' F " C ) -1-1-onto-> C ) |