| Step | Hyp | Ref | Expression | 
						
							| 1 |  | freshmansdream.s |  |-  B = ( Base ` R ) | 
						
							| 2 |  | freshmansdream.a |  |-  .+ = ( +g ` R ) | 
						
							| 3 |  | freshmansdream.p |  |-  .^ = ( .g ` ( mulGrp ` R ) ) | 
						
							| 4 |  | freshmansdream.c |  |-  P = ( chr ` R ) | 
						
							| 5 |  | freshmansdream.r |  |-  ( ph -> R e. CRing ) | 
						
							| 6 |  | freshmansdream.1 |  |-  ( ph -> P e. Prime ) | 
						
							| 7 |  | freshmansdream.x |  |-  ( ph -> X e. B ) | 
						
							| 8 |  | freshmansdream.y |  |-  ( ph -> Y e. B ) | 
						
							| 9 |  | crngring |  |-  ( R e. CRing -> R e. Ring ) | 
						
							| 10 | 4 | chrcl |  |-  ( R e. Ring -> P e. NN0 ) | 
						
							| 11 | 5 9 10 | 3syl |  |-  ( ph -> P e. NN0 ) | 
						
							| 12 |  | eqid |  |-  ( .r ` R ) = ( .r ` R ) | 
						
							| 13 |  | eqid |  |-  ( .g ` R ) = ( .g ` R ) | 
						
							| 14 |  | eqid |  |-  ( mulGrp ` R ) = ( mulGrp ` R ) | 
						
							| 15 | 1 12 13 2 14 3 | crngbinom |  |-  ( ( ( R e. CRing /\ P e. NN0 ) /\ ( X e. B /\ Y e. B ) ) -> ( P .^ ( X .+ Y ) ) = ( R gsum ( i e. ( 0 ... P ) |-> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) ) ) ) | 
						
							| 16 | 5 11 7 8 15 | syl22anc |  |-  ( ph -> ( P .^ ( X .+ Y ) ) = ( R gsum ( i e. ( 0 ... P ) |-> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) ) ) ) | 
						
							| 17 | 11 | nn0cnd |  |-  ( ph -> P e. CC ) | 
						
							| 18 |  | 1cnd |  |-  ( ph -> 1 e. CC ) | 
						
							| 19 | 17 18 | npcand |  |-  ( ph -> ( ( P - 1 ) + 1 ) = P ) | 
						
							| 20 | 19 | oveq2d |  |-  ( ph -> ( 0 ... ( ( P - 1 ) + 1 ) ) = ( 0 ... P ) ) | 
						
							| 21 | 20 | eqcomd |  |-  ( ph -> ( 0 ... P ) = ( 0 ... ( ( P - 1 ) + 1 ) ) ) | 
						
							| 22 | 21 | mpteq1d |  |-  ( ph -> ( i e. ( 0 ... P ) |-> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) ) = ( i e. ( 0 ... ( ( P - 1 ) + 1 ) ) |-> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) ) ) | 
						
							| 23 | 22 | oveq2d |  |-  ( ph -> ( R gsum ( i e. ( 0 ... P ) |-> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) ) ) = ( R gsum ( i e. ( 0 ... ( ( P - 1 ) + 1 ) ) |-> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) ) ) ) | 
						
							| 24 |  | ringcmn |  |-  ( R e. Ring -> R e. CMnd ) | 
						
							| 25 | 5 9 24 | 3syl |  |-  ( ph -> R e. CMnd ) | 
						
							| 26 |  | prmnn |  |-  ( P e. Prime -> P e. NN ) | 
						
							| 27 |  | nnm1nn0 |  |-  ( P e. NN -> ( P - 1 ) e. NN0 ) | 
						
							| 28 | 6 26 27 | 3syl |  |-  ( ph -> ( P - 1 ) e. NN0 ) | 
						
							| 29 |  | ringgrp |  |-  ( R e. Ring -> R e. Grp ) | 
						
							| 30 | 5 9 29 | 3syl |  |-  ( ph -> R e. Grp ) | 
						
							| 31 | 30 | adantr |  |-  ( ( ph /\ i e. ( 0 ... ( ( P - 1 ) + 1 ) ) ) -> R e. Grp ) | 
						
							| 32 | 11 | adantr |  |-  ( ( ph /\ i e. ( 0 ... ( ( P - 1 ) + 1 ) ) ) -> P e. NN0 ) | 
						
							| 33 |  | fzssz |  |-  ( 0 ... ( ( P - 1 ) + 1 ) ) C_ ZZ | 
						
							| 34 | 33 | a1i |  |-  ( ph -> ( 0 ... ( ( P - 1 ) + 1 ) ) C_ ZZ ) | 
						
							| 35 | 34 | sselda |  |-  ( ( ph /\ i e. ( 0 ... ( ( P - 1 ) + 1 ) ) ) -> i e. ZZ ) | 
						
							| 36 |  | bccl |  |-  ( ( P e. NN0 /\ i e. ZZ ) -> ( P _C i ) e. NN0 ) | 
						
							| 37 | 32 35 36 | syl2anc |  |-  ( ( ph /\ i e. ( 0 ... ( ( P - 1 ) + 1 ) ) ) -> ( P _C i ) e. NN0 ) | 
						
							| 38 | 37 | nn0zd |  |-  ( ( ph /\ i e. ( 0 ... ( ( P - 1 ) + 1 ) ) ) -> ( P _C i ) e. ZZ ) | 
						
							| 39 | 5 9 | syl |  |-  ( ph -> R e. Ring ) | 
						
							| 40 | 39 | adantr |  |-  ( ( ph /\ i e. ( 0 ... ( ( P - 1 ) + 1 ) ) ) -> R e. Ring ) | 
						
							| 41 | 14 1 | mgpbas |  |-  B = ( Base ` ( mulGrp ` R ) ) | 
						
							| 42 | 14 | ringmgp |  |-  ( R e. Ring -> ( mulGrp ` R ) e. Mnd ) | 
						
							| 43 | 39 42 | syl |  |-  ( ph -> ( mulGrp ` R ) e. Mnd ) | 
						
							| 44 | 43 | adantr |  |-  ( ( ph /\ i e. ( 0 ... ( ( P - 1 ) + 1 ) ) ) -> ( mulGrp ` R ) e. Mnd ) | 
						
							| 45 |  | simpr |  |-  ( ( ph /\ i e. ( 0 ... ( ( P - 1 ) + 1 ) ) ) -> i e. ( 0 ... ( ( P - 1 ) + 1 ) ) ) | 
						
							| 46 | 20 | adantr |  |-  ( ( ph /\ i e. ( 0 ... ( ( P - 1 ) + 1 ) ) ) -> ( 0 ... ( ( P - 1 ) + 1 ) ) = ( 0 ... P ) ) | 
						
							| 47 | 45 46 | eleqtrd |  |-  ( ( ph /\ i e. ( 0 ... ( ( P - 1 ) + 1 ) ) ) -> i e. ( 0 ... P ) ) | 
						
							| 48 |  | fznn0sub |  |-  ( i e. ( 0 ... P ) -> ( P - i ) e. NN0 ) | 
						
							| 49 | 47 48 | syl |  |-  ( ( ph /\ i e. ( 0 ... ( ( P - 1 ) + 1 ) ) ) -> ( P - i ) e. NN0 ) | 
						
							| 50 | 7 | adantr |  |-  ( ( ph /\ i e. ( 0 ... ( ( P - 1 ) + 1 ) ) ) -> X e. B ) | 
						
							| 51 | 41 3 44 49 50 | mulgnn0cld |  |-  ( ( ph /\ i e. ( 0 ... ( ( P - 1 ) + 1 ) ) ) -> ( ( P - i ) .^ X ) e. B ) | 
						
							| 52 |  | elfznn0 |  |-  ( i e. ( 0 ... ( ( P - 1 ) + 1 ) ) -> i e. NN0 ) | 
						
							| 53 | 52 | adantl |  |-  ( ( ph /\ i e. ( 0 ... ( ( P - 1 ) + 1 ) ) ) -> i e. NN0 ) | 
						
							| 54 | 8 | adantr |  |-  ( ( ph /\ i e. ( 0 ... ( ( P - 1 ) + 1 ) ) ) -> Y e. B ) | 
						
							| 55 | 41 3 44 53 54 | mulgnn0cld |  |-  ( ( ph /\ i e. ( 0 ... ( ( P - 1 ) + 1 ) ) ) -> ( i .^ Y ) e. B ) | 
						
							| 56 | 1 12 | ringcl |  |-  ( ( R e. Ring /\ ( ( P - i ) .^ X ) e. B /\ ( i .^ Y ) e. B ) -> ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) e. B ) | 
						
							| 57 | 40 51 55 56 | syl3anc |  |-  ( ( ph /\ i e. ( 0 ... ( ( P - 1 ) + 1 ) ) ) -> ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) e. B ) | 
						
							| 58 | 1 13 | mulgcl |  |-  ( ( R e. Grp /\ ( P _C i ) e. ZZ /\ ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) e. B ) -> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) e. B ) | 
						
							| 59 | 31 38 57 58 | syl3anc |  |-  ( ( ph /\ i e. ( 0 ... ( ( P - 1 ) + 1 ) ) ) -> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) e. B ) | 
						
							| 60 | 1 2 25 28 59 | gsummptfzsplit |  |-  ( ph -> ( R gsum ( i e. ( 0 ... ( ( P - 1 ) + 1 ) ) |-> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) ) ) = ( ( R gsum ( i e. ( 0 ... ( P - 1 ) ) |-> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) ) ) .+ ( R gsum ( i e. { ( ( P - 1 ) + 1 ) } |-> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) ) ) ) ) | 
						
							| 61 | 30 | adantr |  |-  ( ( ph /\ i e. ( 0 ... ( P - 1 ) ) ) -> R e. Grp ) | 
						
							| 62 |  | elfzelz |  |-  ( i e. ( 0 ... ( P - 1 ) ) -> i e. ZZ ) | 
						
							| 63 | 11 62 36 | syl2an |  |-  ( ( ph /\ i e. ( 0 ... ( P - 1 ) ) ) -> ( P _C i ) e. NN0 ) | 
						
							| 64 | 63 | nn0zd |  |-  ( ( ph /\ i e. ( 0 ... ( P - 1 ) ) ) -> ( P _C i ) e. ZZ ) | 
						
							| 65 | 39 | adantr |  |-  ( ( ph /\ i e. ( 0 ... ( P - 1 ) ) ) -> R e. Ring ) | 
						
							| 66 | 65 42 | syl |  |-  ( ( ph /\ i e. ( 0 ... ( P - 1 ) ) ) -> ( mulGrp ` R ) e. Mnd ) | 
						
							| 67 |  | fzssp1 |  |-  ( 0 ... ( P - 1 ) ) C_ ( 0 ... ( ( P - 1 ) + 1 ) ) | 
						
							| 68 | 67 20 | sseqtrid |  |-  ( ph -> ( 0 ... ( P - 1 ) ) C_ ( 0 ... P ) ) | 
						
							| 69 | 68 | sselda |  |-  ( ( ph /\ i e. ( 0 ... ( P - 1 ) ) ) -> i e. ( 0 ... P ) ) | 
						
							| 70 | 69 48 | syl |  |-  ( ( ph /\ i e. ( 0 ... ( P - 1 ) ) ) -> ( P - i ) e. NN0 ) | 
						
							| 71 | 7 | adantr |  |-  ( ( ph /\ i e. ( 0 ... ( P - 1 ) ) ) -> X e. B ) | 
						
							| 72 | 41 3 66 70 71 | mulgnn0cld |  |-  ( ( ph /\ i e. ( 0 ... ( P - 1 ) ) ) -> ( ( P - i ) .^ X ) e. B ) | 
						
							| 73 |  | elfznn0 |  |-  ( i e. ( 0 ... ( P - 1 ) ) -> i e. NN0 ) | 
						
							| 74 | 73 | adantl |  |-  ( ( ph /\ i e. ( 0 ... ( P - 1 ) ) ) -> i e. NN0 ) | 
						
							| 75 | 8 | adantr |  |-  ( ( ph /\ i e. ( 0 ... ( P - 1 ) ) ) -> Y e. B ) | 
						
							| 76 | 41 3 66 74 75 | mulgnn0cld |  |-  ( ( ph /\ i e. ( 0 ... ( P - 1 ) ) ) -> ( i .^ Y ) e. B ) | 
						
							| 77 | 65 72 76 56 | syl3anc |  |-  ( ( ph /\ i e. ( 0 ... ( P - 1 ) ) ) -> ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) e. B ) | 
						
							| 78 | 61 64 77 58 | syl3anc |  |-  ( ( ph /\ i e. ( 0 ... ( P - 1 ) ) ) -> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) e. B ) | 
						
							| 79 | 1 2 25 28 78 | gsummptfzsplitl |  |-  ( ph -> ( R gsum ( i e. ( 0 ... ( P - 1 ) ) |-> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) ) ) = ( ( R gsum ( i e. ( 1 ... ( P - 1 ) ) |-> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) ) ) .+ ( R gsum ( i e. { 0 } |-> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) ) ) ) ) | 
						
							| 80 | 39 | adantr |  |-  ( ( ph /\ i e. ( 1 ... ( P - 1 ) ) ) -> R e. Ring ) | 
						
							| 81 |  | prmdvdsbc |  |-  ( ( P e. Prime /\ i e. ( 1 ... ( P - 1 ) ) ) -> P || ( P _C i ) ) | 
						
							| 82 | 6 81 | sylan |  |-  ( ( ph /\ i e. ( 1 ... ( P - 1 ) ) ) -> P || ( P _C i ) ) | 
						
							| 83 | 80 42 | syl |  |-  ( ( ph /\ i e. ( 1 ... ( P - 1 ) ) ) -> ( mulGrp ` R ) e. Mnd ) | 
						
							| 84 | 11 | nn0zd |  |-  ( ph -> P e. ZZ ) | 
						
							| 85 |  | 1nn0 |  |-  1 e. NN0 | 
						
							| 86 |  | eluzmn |  |-  ( ( P e. ZZ /\ 1 e. NN0 ) -> P e. ( ZZ>= ` ( P - 1 ) ) ) | 
						
							| 87 | 84 85 86 | sylancl |  |-  ( ph -> P e. ( ZZ>= ` ( P - 1 ) ) ) | 
						
							| 88 |  | fzss2 |  |-  ( P e. ( ZZ>= ` ( P - 1 ) ) -> ( 1 ... ( P - 1 ) ) C_ ( 1 ... P ) ) | 
						
							| 89 | 87 88 | syl |  |-  ( ph -> ( 1 ... ( P - 1 ) ) C_ ( 1 ... P ) ) | 
						
							| 90 | 89 | sselda |  |-  ( ( ph /\ i e. ( 1 ... ( P - 1 ) ) ) -> i e. ( 1 ... P ) ) | 
						
							| 91 |  | fznn0sub |  |-  ( i e. ( 1 ... P ) -> ( P - i ) e. NN0 ) | 
						
							| 92 | 90 91 | syl |  |-  ( ( ph /\ i e. ( 1 ... ( P - 1 ) ) ) -> ( P - i ) e. NN0 ) | 
						
							| 93 | 7 | adantr |  |-  ( ( ph /\ i e. ( 1 ... ( P - 1 ) ) ) -> X e. B ) | 
						
							| 94 | 41 3 83 92 93 | mulgnn0cld |  |-  ( ( ph /\ i e. ( 1 ... ( P - 1 ) ) ) -> ( ( P - i ) .^ X ) e. B ) | 
						
							| 95 |  | elfznn |  |-  ( i e. ( 1 ... ( P - 1 ) ) -> i e. NN ) | 
						
							| 96 | 95 | nnnn0d |  |-  ( i e. ( 1 ... ( P - 1 ) ) -> i e. NN0 ) | 
						
							| 97 | 96 | adantl |  |-  ( ( ph /\ i e. ( 1 ... ( P - 1 ) ) ) -> i e. NN0 ) | 
						
							| 98 | 8 | adantr |  |-  ( ( ph /\ i e. ( 1 ... ( P - 1 ) ) ) -> Y e. B ) | 
						
							| 99 | 41 3 83 97 98 | mulgnn0cld |  |-  ( ( ph /\ i e. ( 1 ... ( P - 1 ) ) ) -> ( i .^ Y ) e. B ) | 
						
							| 100 | 80 94 99 56 | syl3anc |  |-  ( ( ph /\ i e. ( 1 ... ( P - 1 ) ) ) -> ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) e. B ) | 
						
							| 101 |  | eqid |  |-  ( 0g ` R ) = ( 0g ` R ) | 
						
							| 102 | 4 1 13 101 | dvdschrmulg |  |-  ( ( R e. Ring /\ P || ( P _C i ) /\ ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) e. B ) -> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) = ( 0g ` R ) ) | 
						
							| 103 | 80 82 100 102 | syl3anc |  |-  ( ( ph /\ i e. ( 1 ... ( P - 1 ) ) ) -> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) = ( 0g ` R ) ) | 
						
							| 104 | 103 | mpteq2dva |  |-  ( ph -> ( i e. ( 1 ... ( P - 1 ) ) |-> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) ) = ( i e. ( 1 ... ( P - 1 ) ) |-> ( 0g ` R ) ) ) | 
						
							| 105 | 104 | oveq2d |  |-  ( ph -> ( R gsum ( i e. ( 1 ... ( P - 1 ) ) |-> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) ) ) = ( R gsum ( i e. ( 1 ... ( P - 1 ) ) |-> ( 0g ` R ) ) ) ) | 
						
							| 106 |  | ringmnd |  |-  ( R e. Ring -> R e. Mnd ) | 
						
							| 107 | 39 106 | syl |  |-  ( ph -> R e. Mnd ) | 
						
							| 108 |  | ovex |  |-  ( 1 ... ( P - 1 ) ) e. _V | 
						
							| 109 | 101 | gsumz |  |-  ( ( R e. Mnd /\ ( 1 ... ( P - 1 ) ) e. _V ) -> ( R gsum ( i e. ( 1 ... ( P - 1 ) ) |-> ( 0g ` R ) ) ) = ( 0g ` R ) ) | 
						
							| 110 | 107 108 109 | sylancl |  |-  ( ph -> ( R gsum ( i e. ( 1 ... ( P - 1 ) ) |-> ( 0g ` R ) ) ) = ( 0g ` R ) ) | 
						
							| 111 | 105 110 | eqtrd |  |-  ( ph -> ( R gsum ( i e. ( 1 ... ( P - 1 ) ) |-> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) ) ) = ( 0g ` R ) ) | 
						
							| 112 |  | 0nn0 |  |-  0 e. NN0 | 
						
							| 113 | 112 | a1i |  |-  ( ph -> 0 e. NN0 ) | 
						
							| 114 | 41 3 43 11 7 | mulgnn0cld |  |-  ( ph -> ( P .^ X ) e. B ) | 
						
							| 115 |  | simpr |  |-  ( ( ph /\ i = 0 ) -> i = 0 ) | 
						
							| 116 | 115 | oveq2d |  |-  ( ( ph /\ i = 0 ) -> ( P _C i ) = ( P _C 0 ) ) | 
						
							| 117 | 115 | oveq2d |  |-  ( ( ph /\ i = 0 ) -> ( P - i ) = ( P - 0 ) ) | 
						
							| 118 | 117 | oveq1d |  |-  ( ( ph /\ i = 0 ) -> ( ( P - i ) .^ X ) = ( ( P - 0 ) .^ X ) ) | 
						
							| 119 | 115 | oveq1d |  |-  ( ( ph /\ i = 0 ) -> ( i .^ Y ) = ( 0 .^ Y ) ) | 
						
							| 120 | 118 119 | oveq12d |  |-  ( ( ph /\ i = 0 ) -> ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) = ( ( ( P - 0 ) .^ X ) ( .r ` R ) ( 0 .^ Y ) ) ) | 
						
							| 121 | 116 120 | oveq12d |  |-  ( ( ph /\ i = 0 ) -> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) = ( ( P _C 0 ) ( .g ` R ) ( ( ( P - 0 ) .^ X ) ( .r ` R ) ( 0 .^ Y ) ) ) ) | 
						
							| 122 |  | bcn0 |  |-  ( P e. NN0 -> ( P _C 0 ) = 1 ) | 
						
							| 123 | 11 122 | syl |  |-  ( ph -> ( P _C 0 ) = 1 ) | 
						
							| 124 | 17 | subid1d |  |-  ( ph -> ( P - 0 ) = P ) | 
						
							| 125 | 124 | oveq1d |  |-  ( ph -> ( ( P - 0 ) .^ X ) = ( P .^ X ) ) | 
						
							| 126 |  | eqid |  |-  ( 1r ` R ) = ( 1r ` R ) | 
						
							| 127 | 14 126 | ringidval |  |-  ( 1r ` R ) = ( 0g ` ( mulGrp ` R ) ) | 
						
							| 128 | 41 127 3 | mulg0 |  |-  ( Y e. B -> ( 0 .^ Y ) = ( 1r ` R ) ) | 
						
							| 129 | 8 128 | syl |  |-  ( ph -> ( 0 .^ Y ) = ( 1r ` R ) ) | 
						
							| 130 | 125 129 | oveq12d |  |-  ( ph -> ( ( ( P - 0 ) .^ X ) ( .r ` R ) ( 0 .^ Y ) ) = ( ( P .^ X ) ( .r ` R ) ( 1r ` R ) ) ) | 
						
							| 131 | 1 12 126 | ringridm |  |-  ( ( R e. Ring /\ ( P .^ X ) e. B ) -> ( ( P .^ X ) ( .r ` R ) ( 1r ` R ) ) = ( P .^ X ) ) | 
						
							| 132 | 39 114 131 | syl2anc |  |-  ( ph -> ( ( P .^ X ) ( .r ` R ) ( 1r ` R ) ) = ( P .^ X ) ) | 
						
							| 133 | 130 132 | eqtrd |  |-  ( ph -> ( ( ( P - 0 ) .^ X ) ( .r ` R ) ( 0 .^ Y ) ) = ( P .^ X ) ) | 
						
							| 134 | 123 133 | oveq12d |  |-  ( ph -> ( ( P _C 0 ) ( .g ` R ) ( ( ( P - 0 ) .^ X ) ( .r ` R ) ( 0 .^ Y ) ) ) = ( 1 ( .g ` R ) ( P .^ X ) ) ) | 
						
							| 135 | 1 13 | mulg1 |  |-  ( ( P .^ X ) e. B -> ( 1 ( .g ` R ) ( P .^ X ) ) = ( P .^ X ) ) | 
						
							| 136 | 114 135 | syl |  |-  ( ph -> ( 1 ( .g ` R ) ( P .^ X ) ) = ( P .^ X ) ) | 
						
							| 137 | 134 136 | eqtrd |  |-  ( ph -> ( ( P _C 0 ) ( .g ` R ) ( ( ( P - 0 ) .^ X ) ( .r ` R ) ( 0 .^ Y ) ) ) = ( P .^ X ) ) | 
						
							| 138 | 137 | adantr |  |-  ( ( ph /\ i = 0 ) -> ( ( P _C 0 ) ( .g ` R ) ( ( ( P - 0 ) .^ X ) ( .r ` R ) ( 0 .^ Y ) ) ) = ( P .^ X ) ) | 
						
							| 139 | 121 138 | eqtrd |  |-  ( ( ph /\ i = 0 ) -> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) = ( P .^ X ) ) | 
						
							| 140 | 1 107 113 114 139 | gsumsnd |  |-  ( ph -> ( R gsum ( i e. { 0 } |-> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) ) ) = ( P .^ X ) ) | 
						
							| 141 | 111 140 | oveq12d |  |-  ( ph -> ( ( R gsum ( i e. ( 1 ... ( P - 1 ) ) |-> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) ) ) .+ ( R gsum ( i e. { 0 } |-> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) ) ) ) = ( ( 0g ` R ) .+ ( P .^ X ) ) ) | 
						
							| 142 | 1 2 101 | grplid |  |-  ( ( R e. Grp /\ ( P .^ X ) e. B ) -> ( ( 0g ` R ) .+ ( P .^ X ) ) = ( P .^ X ) ) | 
						
							| 143 | 30 114 142 | syl2anc |  |-  ( ph -> ( ( 0g ` R ) .+ ( P .^ X ) ) = ( P .^ X ) ) | 
						
							| 144 | 79 141 143 | 3eqtrd |  |-  ( ph -> ( R gsum ( i e. ( 0 ... ( P - 1 ) ) |-> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) ) ) = ( P .^ X ) ) | 
						
							| 145 | 19 11 | eqeltrd |  |-  ( ph -> ( ( P - 1 ) + 1 ) e. NN0 ) | 
						
							| 146 | 41 3 43 11 8 | mulgnn0cld |  |-  ( ph -> ( P .^ Y ) e. B ) | 
						
							| 147 |  | simpr |  |-  ( ( ph /\ i = ( ( P - 1 ) + 1 ) ) -> i = ( ( P - 1 ) + 1 ) ) | 
						
							| 148 | 19 | adantr |  |-  ( ( ph /\ i = ( ( P - 1 ) + 1 ) ) -> ( ( P - 1 ) + 1 ) = P ) | 
						
							| 149 | 147 148 | eqtrd |  |-  ( ( ph /\ i = ( ( P - 1 ) + 1 ) ) -> i = P ) | 
						
							| 150 | 149 | oveq2d |  |-  ( ( ph /\ i = ( ( P - 1 ) + 1 ) ) -> ( P _C i ) = ( P _C P ) ) | 
						
							| 151 | 149 | oveq2d |  |-  ( ( ph /\ i = ( ( P - 1 ) + 1 ) ) -> ( P - i ) = ( P - P ) ) | 
						
							| 152 | 151 | oveq1d |  |-  ( ( ph /\ i = ( ( P - 1 ) + 1 ) ) -> ( ( P - i ) .^ X ) = ( ( P - P ) .^ X ) ) | 
						
							| 153 | 149 | oveq1d |  |-  ( ( ph /\ i = ( ( P - 1 ) + 1 ) ) -> ( i .^ Y ) = ( P .^ Y ) ) | 
						
							| 154 | 152 153 | oveq12d |  |-  ( ( ph /\ i = ( ( P - 1 ) + 1 ) ) -> ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) = ( ( ( P - P ) .^ X ) ( .r ` R ) ( P .^ Y ) ) ) | 
						
							| 155 | 150 154 | oveq12d |  |-  ( ( ph /\ i = ( ( P - 1 ) + 1 ) ) -> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) = ( ( P _C P ) ( .g ` R ) ( ( ( P - P ) .^ X ) ( .r ` R ) ( P .^ Y ) ) ) ) | 
						
							| 156 |  | bcnn |  |-  ( P e. NN0 -> ( P _C P ) = 1 ) | 
						
							| 157 | 11 156 | syl |  |-  ( ph -> ( P _C P ) = 1 ) | 
						
							| 158 | 17 | subidd |  |-  ( ph -> ( P - P ) = 0 ) | 
						
							| 159 | 158 | oveq1d |  |-  ( ph -> ( ( P - P ) .^ X ) = ( 0 .^ X ) ) | 
						
							| 160 | 41 127 3 | mulg0 |  |-  ( X e. B -> ( 0 .^ X ) = ( 1r ` R ) ) | 
						
							| 161 | 7 160 | syl |  |-  ( ph -> ( 0 .^ X ) = ( 1r ` R ) ) | 
						
							| 162 | 159 161 | eqtrd |  |-  ( ph -> ( ( P - P ) .^ X ) = ( 1r ` R ) ) | 
						
							| 163 | 162 | oveq1d |  |-  ( ph -> ( ( ( P - P ) .^ X ) ( .r ` R ) ( P .^ Y ) ) = ( ( 1r ` R ) ( .r ` R ) ( P .^ Y ) ) ) | 
						
							| 164 | 1 12 126 | ringlidm |  |-  ( ( R e. Ring /\ ( P .^ Y ) e. B ) -> ( ( 1r ` R ) ( .r ` R ) ( P .^ Y ) ) = ( P .^ Y ) ) | 
						
							| 165 | 39 146 164 | syl2anc |  |-  ( ph -> ( ( 1r ` R ) ( .r ` R ) ( P .^ Y ) ) = ( P .^ Y ) ) | 
						
							| 166 | 163 165 | eqtrd |  |-  ( ph -> ( ( ( P - P ) .^ X ) ( .r ` R ) ( P .^ Y ) ) = ( P .^ Y ) ) | 
						
							| 167 | 157 166 | oveq12d |  |-  ( ph -> ( ( P _C P ) ( .g ` R ) ( ( ( P - P ) .^ X ) ( .r ` R ) ( P .^ Y ) ) ) = ( 1 ( .g ` R ) ( P .^ Y ) ) ) | 
						
							| 168 | 1 13 | mulg1 |  |-  ( ( P .^ Y ) e. B -> ( 1 ( .g ` R ) ( P .^ Y ) ) = ( P .^ Y ) ) | 
						
							| 169 | 146 168 | syl |  |-  ( ph -> ( 1 ( .g ` R ) ( P .^ Y ) ) = ( P .^ Y ) ) | 
						
							| 170 | 167 169 | eqtrd |  |-  ( ph -> ( ( P _C P ) ( .g ` R ) ( ( ( P - P ) .^ X ) ( .r ` R ) ( P .^ Y ) ) ) = ( P .^ Y ) ) | 
						
							| 171 | 170 | adantr |  |-  ( ( ph /\ i = ( ( P - 1 ) + 1 ) ) -> ( ( P _C P ) ( .g ` R ) ( ( ( P - P ) .^ X ) ( .r ` R ) ( P .^ Y ) ) ) = ( P .^ Y ) ) | 
						
							| 172 | 155 171 | eqtrd |  |-  ( ( ph /\ i = ( ( P - 1 ) + 1 ) ) -> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) = ( P .^ Y ) ) | 
						
							| 173 | 1 107 145 146 172 | gsumsnd |  |-  ( ph -> ( R gsum ( i e. { ( ( P - 1 ) + 1 ) } |-> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) ) ) = ( P .^ Y ) ) | 
						
							| 174 | 144 173 | oveq12d |  |-  ( ph -> ( ( R gsum ( i e. ( 0 ... ( P - 1 ) ) |-> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) ) ) .+ ( R gsum ( i e. { ( ( P - 1 ) + 1 ) } |-> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) ) ) ) = ( ( P .^ X ) .+ ( P .^ Y ) ) ) | 
						
							| 175 | 60 174 | eqtrd |  |-  ( ph -> ( R gsum ( i e. ( 0 ... ( ( P - 1 ) + 1 ) ) |-> ( ( P _C i ) ( .g ` R ) ( ( ( P - i ) .^ X ) ( .r ` R ) ( i .^ Y ) ) ) ) ) = ( ( P .^ X ) .+ ( P .^ Y ) ) ) | 
						
							| 176 | 16 23 175 | 3eqtrd |  |-  ( ph -> ( P .^ ( X .+ Y ) ) = ( ( P .^ X ) .+ ( P .^ Y ) ) ) |