| Step | Hyp | Ref | Expression | 
						
							| 1 |  | inss1 |  |-  ( A i^i X ) C_ A | 
						
							| 2 |  | fssres |  |-  ( ( F : A --> B /\ ( A i^i X ) C_ A ) -> ( F |` ( A i^i X ) ) : ( A i^i X ) --> B ) | 
						
							| 3 | 1 2 | mpan2 |  |-  ( F : A --> B -> ( F |` ( A i^i X ) ) : ( A i^i X ) --> B ) | 
						
							| 4 |  | resres |  |-  ( ( F |` A ) |` X ) = ( F |` ( A i^i X ) ) | 
						
							| 5 |  | ffn |  |-  ( F : A --> B -> F Fn A ) | 
						
							| 6 |  | fnresdm |  |-  ( F Fn A -> ( F |` A ) = F ) | 
						
							| 7 | 5 6 | syl |  |-  ( F : A --> B -> ( F |` A ) = F ) | 
						
							| 8 | 7 | reseq1d |  |-  ( F : A --> B -> ( ( F |` A ) |` X ) = ( F |` X ) ) | 
						
							| 9 | 4 8 | eqtr3id |  |-  ( F : A --> B -> ( F |` ( A i^i X ) ) = ( F |` X ) ) | 
						
							| 10 | 9 | feq1d |  |-  ( F : A --> B -> ( ( F |` ( A i^i X ) ) : ( A i^i X ) --> B <-> ( F |` X ) : ( A i^i X ) --> B ) ) | 
						
							| 11 | 3 10 | mpbid |  |-  ( F : A --> B -> ( F |` X ) : ( A i^i X ) --> B ) |