Metamath Proof Explorer


Theorem fresison

Description: "Fresison", one of the syllogisms of Aristotelian logic. No ph is ps (PeM), and some ps is ch (MiS), therefore some ch is not ph (SoP). In Aristotelian notation, EIO-4: PeM and MiS therefore SoP. (Contributed by David A. Wheeler, 28-Aug-2016) Shorten and reduce dependencies on axioms. (Revised by BJ, 16-Sep-2022)

Ref Expression
Hypotheses fresison.maj
|- A. x ( ph -> -. ps )
fresison.min
|- E. x ( ps /\ ch )
Assertion fresison
|- E. x ( ch /\ -. ph )

Proof

Step Hyp Ref Expression
1 fresison.maj
 |-  A. x ( ph -> -. ps )
2 fresison.min
 |-  E. x ( ps /\ ch )
3 exancom
 |-  ( E. x ( ps /\ ch ) <-> E. x ( ch /\ ps ) )
4 2 3 mpbi
 |-  E. x ( ch /\ ps )
5 1 4 festino
 |-  E. x ( ch /\ -. ph )