Step |
Hyp |
Ref |
Expression |
1 |
|
sneq |
|- ( x = B -> { x } = { B } ) |
2 |
|
reseq2 |
|- ( { x } = { B } -> ( F |` { x } ) = ( F |` { B } ) ) |
3 |
2
|
feq1d |
|- ( { x } = { B } -> ( ( F |` { x } ) : { x } --> C <-> ( F |` { B } ) : { x } --> C ) ) |
4 |
|
feq2 |
|- ( { x } = { B } -> ( ( F |` { B } ) : { x } --> C <-> ( F |` { B } ) : { B } --> C ) ) |
5 |
3 4
|
bitrd |
|- ( { x } = { B } -> ( ( F |` { x } ) : { x } --> C <-> ( F |` { B } ) : { B } --> C ) ) |
6 |
1 5
|
syl |
|- ( x = B -> ( ( F |` { x } ) : { x } --> C <-> ( F |` { B } ) : { B } --> C ) ) |
7 |
|
fveq2 |
|- ( x = B -> ( F ` x ) = ( F ` B ) ) |
8 |
7
|
eleq1d |
|- ( x = B -> ( ( F ` x ) e. C <-> ( F ` B ) e. C ) ) |
9 |
6 8
|
bibi12d |
|- ( x = B -> ( ( ( F |` { x } ) : { x } --> C <-> ( F ` x ) e. C ) <-> ( ( F |` { B } ) : { B } --> C <-> ( F ` B ) e. C ) ) ) |
10 |
9
|
imbi2d |
|- ( x = B -> ( ( F Fn A -> ( ( F |` { x } ) : { x } --> C <-> ( F ` x ) e. C ) ) <-> ( F Fn A -> ( ( F |` { B } ) : { B } --> C <-> ( F ` B ) e. C ) ) ) ) |
11 |
|
fnressn |
|- ( ( F Fn A /\ x e. A ) -> ( F |` { x } ) = { <. x , ( F ` x ) >. } ) |
12 |
|
vsnid |
|- x e. { x } |
13 |
|
fvres |
|- ( x e. { x } -> ( ( F |` { x } ) ` x ) = ( F ` x ) ) |
14 |
12 13
|
ax-mp |
|- ( ( F |` { x } ) ` x ) = ( F ` x ) |
15 |
14
|
opeq2i |
|- <. x , ( ( F |` { x } ) ` x ) >. = <. x , ( F ` x ) >. |
16 |
15
|
sneqi |
|- { <. x , ( ( F |` { x } ) ` x ) >. } = { <. x , ( F ` x ) >. } |
17 |
16
|
eqeq2i |
|- ( ( F |` { x } ) = { <. x , ( ( F |` { x } ) ` x ) >. } <-> ( F |` { x } ) = { <. x , ( F ` x ) >. } ) |
18 |
|
vex |
|- x e. _V |
19 |
18
|
fsn2 |
|- ( ( F |` { x } ) : { x } --> C <-> ( ( ( F |` { x } ) ` x ) e. C /\ ( F |` { x } ) = { <. x , ( ( F |` { x } ) ` x ) >. } ) ) |
20 |
|
iba |
|- ( ( F |` { x } ) = { <. x , ( ( F |` { x } ) ` x ) >. } -> ( ( ( F |` { x } ) ` x ) e. C <-> ( ( ( F |` { x } ) ` x ) e. C /\ ( F |` { x } ) = { <. x , ( ( F |` { x } ) ` x ) >. } ) ) ) |
21 |
14
|
eleq1i |
|- ( ( ( F |` { x } ) ` x ) e. C <-> ( F ` x ) e. C ) |
22 |
20 21
|
bitr3di |
|- ( ( F |` { x } ) = { <. x , ( ( F |` { x } ) ` x ) >. } -> ( ( ( ( F |` { x } ) ` x ) e. C /\ ( F |` { x } ) = { <. x , ( ( F |` { x } ) ` x ) >. } ) <-> ( F ` x ) e. C ) ) |
23 |
19 22
|
syl5bb |
|- ( ( F |` { x } ) = { <. x , ( ( F |` { x } ) ` x ) >. } -> ( ( F |` { x } ) : { x } --> C <-> ( F ` x ) e. C ) ) |
24 |
17 23
|
sylbir |
|- ( ( F |` { x } ) = { <. x , ( F ` x ) >. } -> ( ( F |` { x } ) : { x } --> C <-> ( F ` x ) e. C ) ) |
25 |
11 24
|
syl |
|- ( ( F Fn A /\ x e. A ) -> ( ( F |` { x } ) : { x } --> C <-> ( F ` x ) e. C ) ) |
26 |
25
|
expcom |
|- ( x e. A -> ( F Fn A -> ( ( F |` { x } ) : { x } --> C <-> ( F ` x ) e. C ) ) ) |
27 |
10 26
|
vtoclga |
|- ( B e. A -> ( F Fn A -> ( ( F |` { B } ) : { B } --> C <-> ( F ` B ) e. C ) ) ) |
28 |
27
|
impcom |
|- ( ( F Fn A /\ B e. A ) -> ( ( F |` { B } ) : { B } --> C <-> ( F ` B ) e. C ) ) |