Metamath Proof Explorer


Theorem frexr

Description: A function taking real values, is a function taking extended real values. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypothesis frexr.1
|- ( ph -> F : A --> RR )
Assertion frexr
|- ( ph -> F : A --> RR* )

Proof

Step Hyp Ref Expression
1 frexr.1
 |-  ( ph -> F : A --> RR )
2 ressxr
 |-  RR C_ RR*
3 2 a1i
 |-  ( ph -> RR C_ RR* )
4 1 3 fssd
 |-  ( ph -> F : A --> RR* )