Step |
Hyp |
Ref |
Expression |
1 |
|
frgp0.m |
|- G = ( freeGrp ` I ) |
2 |
|
frgp0.r |
|- .~ = ( ~FG ` I ) |
3 |
|
eqid |
|- ( freeMnd ` ( I X. 2o ) ) = ( freeMnd ` ( I X. 2o ) ) |
4 |
1 3 2
|
frgpval |
|- ( I e. V -> G = ( ( freeMnd ` ( I X. 2o ) ) /s .~ ) ) |
5 |
|
2on |
|- 2o e. On |
6 |
|
xpexg |
|- ( ( I e. V /\ 2o e. On ) -> ( I X. 2o ) e. _V ) |
7 |
5 6
|
mpan2 |
|- ( I e. V -> ( I X. 2o ) e. _V ) |
8 |
|
eqid |
|- ( Base ` ( freeMnd ` ( I X. 2o ) ) ) = ( Base ` ( freeMnd ` ( I X. 2o ) ) ) |
9 |
3 8
|
frmdbas |
|- ( ( I X. 2o ) e. _V -> ( Base ` ( freeMnd ` ( I X. 2o ) ) ) = Word ( I X. 2o ) ) |
10 |
7 9
|
syl |
|- ( I e. V -> ( Base ` ( freeMnd ` ( I X. 2o ) ) ) = Word ( I X. 2o ) ) |
11 |
10
|
eqcomd |
|- ( I e. V -> Word ( I X. 2o ) = ( Base ` ( freeMnd ` ( I X. 2o ) ) ) ) |
12 |
|
eqidd |
|- ( I e. V -> ( +g ` ( freeMnd ` ( I X. 2o ) ) ) = ( +g ` ( freeMnd ` ( I X. 2o ) ) ) ) |
13 |
|
eqid |
|- ( _I ` Word ( I X. 2o ) ) = ( _I ` Word ( I X. 2o ) ) |
14 |
13 2
|
efger |
|- .~ Er ( _I ` Word ( I X. 2o ) ) |
15 |
|
wrdexg |
|- ( ( I X. 2o ) e. _V -> Word ( I X. 2o ) e. _V ) |
16 |
|
fvi |
|- ( Word ( I X. 2o ) e. _V -> ( _I ` Word ( I X. 2o ) ) = Word ( I X. 2o ) ) |
17 |
7 15 16
|
3syl |
|- ( I e. V -> ( _I ` Word ( I X. 2o ) ) = Word ( I X. 2o ) ) |
18 |
|
ereq2 |
|- ( ( _I ` Word ( I X. 2o ) ) = Word ( I X. 2o ) -> ( .~ Er ( _I ` Word ( I X. 2o ) ) <-> .~ Er Word ( I X. 2o ) ) ) |
19 |
17 18
|
syl |
|- ( I e. V -> ( .~ Er ( _I ` Word ( I X. 2o ) ) <-> .~ Er Word ( I X. 2o ) ) ) |
20 |
14 19
|
mpbii |
|- ( I e. V -> .~ Er Word ( I X. 2o ) ) |
21 |
|
fvexd |
|- ( I e. V -> ( freeMnd ` ( I X. 2o ) ) e. _V ) |
22 |
|
eqid |
|- ( +g ` ( freeMnd ` ( I X. 2o ) ) ) = ( +g ` ( freeMnd ` ( I X. 2o ) ) ) |
23 |
1 3 2 22
|
frgpcpbl |
|- ( ( a .~ b /\ c .~ d ) -> ( a ( +g ` ( freeMnd ` ( I X. 2o ) ) ) c ) .~ ( b ( +g ` ( freeMnd ` ( I X. 2o ) ) ) d ) ) |
24 |
23
|
a1i |
|- ( I e. V -> ( ( a .~ b /\ c .~ d ) -> ( a ( +g ` ( freeMnd ` ( I X. 2o ) ) ) c ) .~ ( b ( +g ` ( freeMnd ` ( I X. 2o ) ) ) d ) ) ) |
25 |
3
|
frmdmnd |
|- ( ( I X. 2o ) e. _V -> ( freeMnd ` ( I X. 2o ) ) e. Mnd ) |
26 |
7 25
|
syl |
|- ( I e. V -> ( freeMnd ` ( I X. 2o ) ) e. Mnd ) |
27 |
26
|
3ad2ant1 |
|- ( ( I e. V /\ x e. Word ( I X. 2o ) /\ y e. Word ( I X. 2o ) ) -> ( freeMnd ` ( I X. 2o ) ) e. Mnd ) |
28 |
|
simp2 |
|- ( ( I e. V /\ x e. Word ( I X. 2o ) /\ y e. Word ( I X. 2o ) ) -> x e. Word ( I X. 2o ) ) |
29 |
11
|
3ad2ant1 |
|- ( ( I e. V /\ x e. Word ( I X. 2o ) /\ y e. Word ( I X. 2o ) ) -> Word ( I X. 2o ) = ( Base ` ( freeMnd ` ( I X. 2o ) ) ) ) |
30 |
28 29
|
eleqtrd |
|- ( ( I e. V /\ x e. Word ( I X. 2o ) /\ y e. Word ( I X. 2o ) ) -> x e. ( Base ` ( freeMnd ` ( I X. 2o ) ) ) ) |
31 |
|
simp3 |
|- ( ( I e. V /\ x e. Word ( I X. 2o ) /\ y e. Word ( I X. 2o ) ) -> y e. Word ( I X. 2o ) ) |
32 |
31 29
|
eleqtrd |
|- ( ( I e. V /\ x e. Word ( I X. 2o ) /\ y e. Word ( I X. 2o ) ) -> y e. ( Base ` ( freeMnd ` ( I X. 2o ) ) ) ) |
33 |
8 22
|
mndcl |
|- ( ( ( freeMnd ` ( I X. 2o ) ) e. Mnd /\ x e. ( Base ` ( freeMnd ` ( I X. 2o ) ) ) /\ y e. ( Base ` ( freeMnd ` ( I X. 2o ) ) ) ) -> ( x ( +g ` ( freeMnd ` ( I X. 2o ) ) ) y ) e. ( Base ` ( freeMnd ` ( I X. 2o ) ) ) ) |
34 |
27 30 32 33
|
syl3anc |
|- ( ( I e. V /\ x e. Word ( I X. 2o ) /\ y e. Word ( I X. 2o ) ) -> ( x ( +g ` ( freeMnd ` ( I X. 2o ) ) ) y ) e. ( Base ` ( freeMnd ` ( I X. 2o ) ) ) ) |
35 |
34 29
|
eleqtrrd |
|- ( ( I e. V /\ x e. Word ( I X. 2o ) /\ y e. Word ( I X. 2o ) ) -> ( x ( +g ` ( freeMnd ` ( I X. 2o ) ) ) y ) e. Word ( I X. 2o ) ) |
36 |
20
|
adantr |
|- ( ( I e. V /\ ( x e. Word ( I X. 2o ) /\ y e. Word ( I X. 2o ) /\ z e. Word ( I X. 2o ) ) ) -> .~ Er Word ( I X. 2o ) ) |
37 |
26
|
adantr |
|- ( ( I e. V /\ ( x e. Word ( I X. 2o ) /\ y e. Word ( I X. 2o ) /\ z e. Word ( I X. 2o ) ) ) -> ( freeMnd ` ( I X. 2o ) ) e. Mnd ) |
38 |
34
|
3adant3r3 |
|- ( ( I e. V /\ ( x e. Word ( I X. 2o ) /\ y e. Word ( I X. 2o ) /\ z e. Word ( I X. 2o ) ) ) -> ( x ( +g ` ( freeMnd ` ( I X. 2o ) ) ) y ) e. ( Base ` ( freeMnd ` ( I X. 2o ) ) ) ) |
39 |
|
simpr3 |
|- ( ( I e. V /\ ( x e. Word ( I X. 2o ) /\ y e. Word ( I X. 2o ) /\ z e. Word ( I X. 2o ) ) ) -> z e. Word ( I X. 2o ) ) |
40 |
11
|
adantr |
|- ( ( I e. V /\ ( x e. Word ( I X. 2o ) /\ y e. Word ( I X. 2o ) /\ z e. Word ( I X. 2o ) ) ) -> Word ( I X. 2o ) = ( Base ` ( freeMnd ` ( I X. 2o ) ) ) ) |
41 |
39 40
|
eleqtrd |
|- ( ( I e. V /\ ( x e. Word ( I X. 2o ) /\ y e. Word ( I X. 2o ) /\ z e. Word ( I X. 2o ) ) ) -> z e. ( Base ` ( freeMnd ` ( I X. 2o ) ) ) ) |
42 |
8 22
|
mndcl |
|- ( ( ( freeMnd ` ( I X. 2o ) ) e. Mnd /\ ( x ( +g ` ( freeMnd ` ( I X. 2o ) ) ) y ) e. ( Base ` ( freeMnd ` ( I X. 2o ) ) ) /\ z e. ( Base ` ( freeMnd ` ( I X. 2o ) ) ) ) -> ( ( x ( +g ` ( freeMnd ` ( I X. 2o ) ) ) y ) ( +g ` ( freeMnd ` ( I X. 2o ) ) ) z ) e. ( Base ` ( freeMnd ` ( I X. 2o ) ) ) ) |
43 |
37 38 41 42
|
syl3anc |
|- ( ( I e. V /\ ( x e. Word ( I X. 2o ) /\ y e. Word ( I X. 2o ) /\ z e. Word ( I X. 2o ) ) ) -> ( ( x ( +g ` ( freeMnd ` ( I X. 2o ) ) ) y ) ( +g ` ( freeMnd ` ( I X. 2o ) ) ) z ) e. ( Base ` ( freeMnd ` ( I X. 2o ) ) ) ) |
44 |
43 40
|
eleqtrrd |
|- ( ( I e. V /\ ( x e. Word ( I X. 2o ) /\ y e. Word ( I X. 2o ) /\ z e. Word ( I X. 2o ) ) ) -> ( ( x ( +g ` ( freeMnd ` ( I X. 2o ) ) ) y ) ( +g ` ( freeMnd ` ( I X. 2o ) ) ) z ) e. Word ( I X. 2o ) ) |
45 |
36 44
|
erref |
|- ( ( I e. V /\ ( x e. Word ( I X. 2o ) /\ y e. Word ( I X. 2o ) /\ z e. Word ( I X. 2o ) ) ) -> ( ( x ( +g ` ( freeMnd ` ( I X. 2o ) ) ) y ) ( +g ` ( freeMnd ` ( I X. 2o ) ) ) z ) .~ ( ( x ( +g ` ( freeMnd ` ( I X. 2o ) ) ) y ) ( +g ` ( freeMnd ` ( I X. 2o ) ) ) z ) ) |
46 |
30
|
3adant3r3 |
|- ( ( I e. V /\ ( x e. Word ( I X. 2o ) /\ y e. Word ( I X. 2o ) /\ z e. Word ( I X. 2o ) ) ) -> x e. ( Base ` ( freeMnd ` ( I X. 2o ) ) ) ) |
47 |
32
|
3adant3r3 |
|- ( ( I e. V /\ ( x e. Word ( I X. 2o ) /\ y e. Word ( I X. 2o ) /\ z e. Word ( I X. 2o ) ) ) -> y e. ( Base ` ( freeMnd ` ( I X. 2o ) ) ) ) |
48 |
8 22
|
mndass |
|- ( ( ( freeMnd ` ( I X. 2o ) ) e. Mnd /\ ( x e. ( Base ` ( freeMnd ` ( I X. 2o ) ) ) /\ y e. ( Base ` ( freeMnd ` ( I X. 2o ) ) ) /\ z e. ( Base ` ( freeMnd ` ( I X. 2o ) ) ) ) ) -> ( ( x ( +g ` ( freeMnd ` ( I X. 2o ) ) ) y ) ( +g ` ( freeMnd ` ( I X. 2o ) ) ) z ) = ( x ( +g ` ( freeMnd ` ( I X. 2o ) ) ) ( y ( +g ` ( freeMnd ` ( I X. 2o ) ) ) z ) ) ) |
49 |
37 46 47 41 48
|
syl13anc |
|- ( ( I e. V /\ ( x e. Word ( I X. 2o ) /\ y e. Word ( I X. 2o ) /\ z e. Word ( I X. 2o ) ) ) -> ( ( x ( +g ` ( freeMnd ` ( I X. 2o ) ) ) y ) ( +g ` ( freeMnd ` ( I X. 2o ) ) ) z ) = ( x ( +g ` ( freeMnd ` ( I X. 2o ) ) ) ( y ( +g ` ( freeMnd ` ( I X. 2o ) ) ) z ) ) ) |
50 |
45 49
|
breqtrd |
|- ( ( I e. V /\ ( x e. Word ( I X. 2o ) /\ y e. Word ( I X. 2o ) /\ z e. Word ( I X. 2o ) ) ) -> ( ( x ( +g ` ( freeMnd ` ( I X. 2o ) ) ) y ) ( +g ` ( freeMnd ` ( I X. 2o ) ) ) z ) .~ ( x ( +g ` ( freeMnd ` ( I X. 2o ) ) ) ( y ( +g ` ( freeMnd ` ( I X. 2o ) ) ) z ) ) ) |
51 |
|
wrd0 |
|- (/) e. Word ( I X. 2o ) |
52 |
51
|
a1i |
|- ( I e. V -> (/) e. Word ( I X. 2o ) ) |
53 |
51 11
|
eleqtrid |
|- ( I e. V -> (/) e. ( Base ` ( freeMnd ` ( I X. 2o ) ) ) ) |
54 |
53
|
adantr |
|- ( ( I e. V /\ x e. Word ( I X. 2o ) ) -> (/) e. ( Base ` ( freeMnd ` ( I X. 2o ) ) ) ) |
55 |
11
|
eleq2d |
|- ( I e. V -> ( x e. Word ( I X. 2o ) <-> x e. ( Base ` ( freeMnd ` ( I X. 2o ) ) ) ) ) |
56 |
55
|
biimpa |
|- ( ( I e. V /\ x e. Word ( I X. 2o ) ) -> x e. ( Base ` ( freeMnd ` ( I X. 2o ) ) ) ) |
57 |
3 8 22
|
frmdadd |
|- ( ( (/) e. ( Base ` ( freeMnd ` ( I X. 2o ) ) ) /\ x e. ( Base ` ( freeMnd ` ( I X. 2o ) ) ) ) -> ( (/) ( +g ` ( freeMnd ` ( I X. 2o ) ) ) x ) = ( (/) ++ x ) ) |
58 |
54 56 57
|
syl2anc |
|- ( ( I e. V /\ x e. Word ( I X. 2o ) ) -> ( (/) ( +g ` ( freeMnd ` ( I X. 2o ) ) ) x ) = ( (/) ++ x ) ) |
59 |
|
ccatlid |
|- ( x e. Word ( I X. 2o ) -> ( (/) ++ x ) = x ) |
60 |
59
|
adantl |
|- ( ( I e. V /\ x e. Word ( I X. 2o ) ) -> ( (/) ++ x ) = x ) |
61 |
58 60
|
eqtrd |
|- ( ( I e. V /\ x e. Word ( I X. 2o ) ) -> ( (/) ( +g ` ( freeMnd ` ( I X. 2o ) ) ) x ) = x ) |
62 |
20
|
adantr |
|- ( ( I e. V /\ x e. Word ( I X. 2o ) ) -> .~ Er Word ( I X. 2o ) ) |
63 |
|
simpr |
|- ( ( I e. V /\ x e. Word ( I X. 2o ) ) -> x e. Word ( I X. 2o ) ) |
64 |
62 63
|
erref |
|- ( ( I e. V /\ x e. Word ( I X. 2o ) ) -> x .~ x ) |
65 |
61 64
|
eqbrtrd |
|- ( ( I e. V /\ x e. Word ( I X. 2o ) ) -> ( (/) ( +g ` ( freeMnd ` ( I X. 2o ) ) ) x ) .~ x ) |
66 |
|
revcl |
|- ( x e. Word ( I X. 2o ) -> ( reverse ` x ) e. Word ( I X. 2o ) ) |
67 |
66
|
adantl |
|- ( ( I e. V /\ x e. Word ( I X. 2o ) ) -> ( reverse ` x ) e. Word ( I X. 2o ) ) |
68 |
|
eqid |
|- ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) |
69 |
68
|
efgmf |
|- ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) : ( I X. 2o ) --> ( I X. 2o ) |
70 |
69
|
a1i |
|- ( ( I e. V /\ x e. Word ( I X. 2o ) ) -> ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) : ( I X. 2o ) --> ( I X. 2o ) ) |
71 |
|
wrdco |
|- ( ( ( reverse ` x ) e. Word ( I X. 2o ) /\ ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) : ( I X. 2o ) --> ( I X. 2o ) ) -> ( ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) o. ( reverse ` x ) ) e. Word ( I X. 2o ) ) |
72 |
67 70 71
|
syl2anc |
|- ( ( I e. V /\ x e. Word ( I X. 2o ) ) -> ( ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) o. ( reverse ` x ) ) e. Word ( I X. 2o ) ) |
73 |
11
|
adantr |
|- ( ( I e. V /\ x e. Word ( I X. 2o ) ) -> Word ( I X. 2o ) = ( Base ` ( freeMnd ` ( I X. 2o ) ) ) ) |
74 |
72 73
|
eleqtrd |
|- ( ( I e. V /\ x e. Word ( I X. 2o ) ) -> ( ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) o. ( reverse ` x ) ) e. ( Base ` ( freeMnd ` ( I X. 2o ) ) ) ) |
75 |
3 8 22
|
frmdadd |
|- ( ( ( ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) o. ( reverse ` x ) ) e. ( Base ` ( freeMnd ` ( I X. 2o ) ) ) /\ x e. ( Base ` ( freeMnd ` ( I X. 2o ) ) ) ) -> ( ( ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) o. ( reverse ` x ) ) ( +g ` ( freeMnd ` ( I X. 2o ) ) ) x ) = ( ( ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) o. ( reverse ` x ) ) ++ x ) ) |
76 |
74 56 75
|
syl2anc |
|- ( ( I e. V /\ x e. Word ( I X. 2o ) ) -> ( ( ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) o. ( reverse ` x ) ) ( +g ` ( freeMnd ` ( I X. 2o ) ) ) x ) = ( ( ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) o. ( reverse ` x ) ) ++ x ) ) |
77 |
17
|
eleq2d |
|- ( I e. V -> ( x e. ( _I ` Word ( I X. 2o ) ) <-> x e. Word ( I X. 2o ) ) ) |
78 |
77
|
biimpar |
|- ( ( I e. V /\ x e. Word ( I X. 2o ) ) -> x e. ( _I ` Word ( I X. 2o ) ) ) |
79 |
|
eqid |
|- ( v e. ( _I ` Word ( I X. 2o ) ) |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) ` w ) "> >. ) ) ) = ( v e. ( _I ` Word ( I X. 2o ) ) |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) ` w ) "> >. ) ) ) |
80 |
13 2 68 79
|
efginvrel1 |
|- ( x e. ( _I ` Word ( I X. 2o ) ) -> ( ( ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) o. ( reverse ` x ) ) ++ x ) .~ (/) ) |
81 |
78 80
|
syl |
|- ( ( I e. V /\ x e. Word ( I X. 2o ) ) -> ( ( ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) o. ( reverse ` x ) ) ++ x ) .~ (/) ) |
82 |
76 81
|
eqbrtrd |
|- ( ( I e. V /\ x e. Word ( I X. 2o ) ) -> ( ( ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) o. ( reverse ` x ) ) ( +g ` ( freeMnd ` ( I X. 2o ) ) ) x ) .~ (/) ) |
83 |
4 11 12 20 21 24 35 50 52 65 72 82
|
qusgrp2 |
|- ( I e. V -> ( G e. Grp /\ [ (/) ] .~ = ( 0g ` G ) ) ) |