Step |
Hyp |
Ref |
Expression |
1 |
|
frgpadd.w |
|- W = ( _I ` Word ( I X. 2o ) ) |
2 |
|
frgpadd.g |
|- G = ( freeGrp ` I ) |
3 |
|
frgpadd.r |
|- .~ = ( ~FG ` I ) |
4 |
|
frgpadd.n |
|- .+ = ( +g ` G ) |
5 |
|
simpl |
|- ( ( A e. W /\ B e. W ) -> A e. W ) |
6 |
|
simpr |
|- ( ( A e. W /\ B e. W ) -> B e. W ) |
7 |
1
|
efgrcl |
|- ( A e. W -> ( I e. _V /\ W = Word ( I X. 2o ) ) ) |
8 |
7
|
adantr |
|- ( ( A e. W /\ B e. W ) -> ( I e. _V /\ W = Word ( I X. 2o ) ) ) |
9 |
8
|
simpld |
|- ( ( A e. W /\ B e. W ) -> I e. _V ) |
10 |
|
eqid |
|- ( freeMnd ` ( I X. 2o ) ) = ( freeMnd ` ( I X. 2o ) ) |
11 |
2 10 3
|
frgpval |
|- ( I e. _V -> G = ( ( freeMnd ` ( I X. 2o ) ) /s .~ ) ) |
12 |
9 11
|
syl |
|- ( ( A e. W /\ B e. W ) -> G = ( ( freeMnd ` ( I X. 2o ) ) /s .~ ) ) |
13 |
8
|
simprd |
|- ( ( A e. W /\ B e. W ) -> W = Word ( I X. 2o ) ) |
14 |
|
2on |
|- 2o e. On |
15 |
|
xpexg |
|- ( ( I e. _V /\ 2o e. On ) -> ( I X. 2o ) e. _V ) |
16 |
9 14 15
|
sylancl |
|- ( ( A e. W /\ B e. W ) -> ( I X. 2o ) e. _V ) |
17 |
|
eqid |
|- ( Base ` ( freeMnd ` ( I X. 2o ) ) ) = ( Base ` ( freeMnd ` ( I X. 2o ) ) ) |
18 |
10 17
|
frmdbas |
|- ( ( I X. 2o ) e. _V -> ( Base ` ( freeMnd ` ( I X. 2o ) ) ) = Word ( I X. 2o ) ) |
19 |
16 18
|
syl |
|- ( ( A e. W /\ B e. W ) -> ( Base ` ( freeMnd ` ( I X. 2o ) ) ) = Word ( I X. 2o ) ) |
20 |
13 19
|
eqtr4d |
|- ( ( A e. W /\ B e. W ) -> W = ( Base ` ( freeMnd ` ( I X. 2o ) ) ) ) |
21 |
1 3
|
efger |
|- .~ Er W |
22 |
21
|
a1i |
|- ( ( A e. W /\ B e. W ) -> .~ Er W ) |
23 |
10
|
frmdmnd |
|- ( ( I X. 2o ) e. _V -> ( freeMnd ` ( I X. 2o ) ) e. Mnd ) |
24 |
16 23
|
syl |
|- ( ( A e. W /\ B e. W ) -> ( freeMnd ` ( I X. 2o ) ) e. Mnd ) |
25 |
|
eqid |
|- ( +g ` ( freeMnd ` ( I X. 2o ) ) ) = ( +g ` ( freeMnd ` ( I X. 2o ) ) ) |
26 |
2 10 3 25
|
frgpcpbl |
|- ( ( a .~ b /\ c .~ d ) -> ( a ( +g ` ( freeMnd ` ( I X. 2o ) ) ) c ) .~ ( b ( +g ` ( freeMnd ` ( I X. 2o ) ) ) d ) ) |
27 |
26
|
a1i |
|- ( ( A e. W /\ B e. W ) -> ( ( a .~ b /\ c .~ d ) -> ( a ( +g ` ( freeMnd ` ( I X. 2o ) ) ) c ) .~ ( b ( +g ` ( freeMnd ` ( I X. 2o ) ) ) d ) ) ) |
28 |
24
|
adantr |
|- ( ( ( A e. W /\ B e. W ) /\ ( b e. W /\ d e. W ) ) -> ( freeMnd ` ( I X. 2o ) ) e. Mnd ) |
29 |
|
simprl |
|- ( ( ( A e. W /\ B e. W ) /\ ( b e. W /\ d e. W ) ) -> b e. W ) |
30 |
20
|
adantr |
|- ( ( ( A e. W /\ B e. W ) /\ ( b e. W /\ d e. W ) ) -> W = ( Base ` ( freeMnd ` ( I X. 2o ) ) ) ) |
31 |
29 30
|
eleqtrd |
|- ( ( ( A e. W /\ B e. W ) /\ ( b e. W /\ d e. W ) ) -> b e. ( Base ` ( freeMnd ` ( I X. 2o ) ) ) ) |
32 |
|
simprr |
|- ( ( ( A e. W /\ B e. W ) /\ ( b e. W /\ d e. W ) ) -> d e. W ) |
33 |
32 30
|
eleqtrd |
|- ( ( ( A e. W /\ B e. W ) /\ ( b e. W /\ d e. W ) ) -> d e. ( Base ` ( freeMnd ` ( I X. 2o ) ) ) ) |
34 |
17 25
|
mndcl |
|- ( ( ( freeMnd ` ( I X. 2o ) ) e. Mnd /\ b e. ( Base ` ( freeMnd ` ( I X. 2o ) ) ) /\ d e. ( Base ` ( freeMnd ` ( I X. 2o ) ) ) ) -> ( b ( +g ` ( freeMnd ` ( I X. 2o ) ) ) d ) e. ( Base ` ( freeMnd ` ( I X. 2o ) ) ) ) |
35 |
28 31 33 34
|
syl3anc |
|- ( ( ( A e. W /\ B e. W ) /\ ( b e. W /\ d e. W ) ) -> ( b ( +g ` ( freeMnd ` ( I X. 2o ) ) ) d ) e. ( Base ` ( freeMnd ` ( I X. 2o ) ) ) ) |
36 |
35 30
|
eleqtrrd |
|- ( ( ( A e. W /\ B e. W ) /\ ( b e. W /\ d e. W ) ) -> ( b ( +g ` ( freeMnd ` ( I X. 2o ) ) ) d ) e. W ) |
37 |
12 20 22 24 27 36 25 4
|
qusaddval |
|- ( ( ( A e. W /\ B e. W ) /\ A e. W /\ B e. W ) -> ( [ A ] .~ .+ [ B ] .~ ) = [ ( A ( +g ` ( freeMnd ` ( I X. 2o ) ) ) B ) ] .~ ) |
38 |
5 6 37
|
mpd3an23 |
|- ( ( A e. W /\ B e. W ) -> ( [ A ] .~ .+ [ B ] .~ ) = [ ( A ( +g ` ( freeMnd ` ( I X. 2o ) ) ) B ) ] .~ ) |
39 |
5 20
|
eleqtrd |
|- ( ( A e. W /\ B e. W ) -> A e. ( Base ` ( freeMnd ` ( I X. 2o ) ) ) ) |
40 |
6 20
|
eleqtrd |
|- ( ( A e. W /\ B e. W ) -> B e. ( Base ` ( freeMnd ` ( I X. 2o ) ) ) ) |
41 |
10 17 25
|
frmdadd |
|- ( ( A e. ( Base ` ( freeMnd ` ( I X. 2o ) ) ) /\ B e. ( Base ` ( freeMnd ` ( I X. 2o ) ) ) ) -> ( A ( +g ` ( freeMnd ` ( I X. 2o ) ) ) B ) = ( A ++ B ) ) |
42 |
39 40 41
|
syl2anc |
|- ( ( A e. W /\ B e. W ) -> ( A ( +g ` ( freeMnd ` ( I X. 2o ) ) ) B ) = ( A ++ B ) ) |
43 |
42
|
eceq1d |
|- ( ( A e. W /\ B e. W ) -> [ ( A ( +g ` ( freeMnd ` ( I X. 2o ) ) ) B ) ] .~ = [ ( A ++ B ) ] .~ ) |
44 |
38 43
|
eqtrd |
|- ( ( A e. W /\ B e. W ) -> ( [ A ] .~ .+ [ B ] .~ ) = [ ( A ++ B ) ] .~ ) |