Step |
Hyp |
Ref |
Expression |
1 |
|
frgpcyg.g |
|- G = ( freeGrp ` I ) |
2 |
|
brdom2 |
|- ( I ~<_ 1o <-> ( I ~< 1o \/ I ~~ 1o ) ) |
3 |
|
sdom1 |
|- ( I ~< 1o <-> I = (/) ) |
4 |
|
fveq2 |
|- ( I = (/) -> ( freeGrp ` I ) = ( freeGrp ` (/) ) ) |
5 |
1 4
|
eqtrid |
|- ( I = (/) -> G = ( freeGrp ` (/) ) ) |
6 |
|
0ex |
|- (/) e. _V |
7 |
|
eqid |
|- ( freeGrp ` (/) ) = ( freeGrp ` (/) ) |
8 |
7
|
frgpgrp |
|- ( (/) e. _V -> ( freeGrp ` (/) ) e. Grp ) |
9 |
6 8
|
ax-mp |
|- ( freeGrp ` (/) ) e. Grp |
10 |
|
eqid |
|- ( Base ` ( freeGrp ` (/) ) ) = ( Base ` ( freeGrp ` (/) ) ) |
11 |
7 10
|
0frgp |
|- ( Base ` ( freeGrp ` (/) ) ) ~~ 1o |
12 |
10
|
0cyg |
|- ( ( ( freeGrp ` (/) ) e. Grp /\ ( Base ` ( freeGrp ` (/) ) ) ~~ 1o ) -> ( freeGrp ` (/) ) e. CycGrp ) |
13 |
9 11 12
|
mp2an |
|- ( freeGrp ` (/) ) e. CycGrp |
14 |
5 13
|
eqeltrdi |
|- ( I = (/) -> G e. CycGrp ) |
15 |
3 14
|
sylbi |
|- ( I ~< 1o -> G e. CycGrp ) |
16 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
17 |
|
eqid |
|- ( .g ` G ) = ( .g ` G ) |
18 |
|
relen |
|- Rel ~~ |
19 |
18
|
brrelex1i |
|- ( I ~~ 1o -> I e. _V ) |
20 |
1
|
frgpgrp |
|- ( I e. _V -> G e. Grp ) |
21 |
19 20
|
syl |
|- ( I ~~ 1o -> G e. Grp ) |
22 |
|
eqid |
|- ( ~FG ` I ) = ( ~FG ` I ) |
23 |
|
eqid |
|- ( varFGrp ` I ) = ( varFGrp ` I ) |
24 |
22 23 1 16
|
vrgpf |
|- ( I e. _V -> ( varFGrp ` I ) : I --> ( Base ` G ) ) |
25 |
19 24
|
syl |
|- ( I ~~ 1o -> ( varFGrp ` I ) : I --> ( Base ` G ) ) |
26 |
|
en1uniel |
|- ( I ~~ 1o -> U. I e. I ) |
27 |
25 26
|
ffvelrnd |
|- ( I ~~ 1o -> ( ( varFGrp ` I ) ` U. I ) e. ( Base ` G ) ) |
28 |
|
zringgrp |
|- ZZring e. Grp |
29 |
19
|
uniexd |
|- ( I ~~ 1o -> U. I e. _V ) |
30 |
|
1zzd |
|- ( I ~~ 1o -> 1 e. ZZ ) |
31 |
29 30
|
fsnd |
|- ( I ~~ 1o -> { <. U. I , 1 >. } : { U. I } --> ZZ ) |
32 |
|
en1b |
|- ( I ~~ 1o <-> I = { U. I } ) |
33 |
32
|
biimpi |
|- ( I ~~ 1o -> I = { U. I } ) |
34 |
33
|
feq2d |
|- ( I ~~ 1o -> ( { <. U. I , 1 >. } : I --> ZZ <-> { <. U. I , 1 >. } : { U. I } --> ZZ ) ) |
35 |
31 34
|
mpbird |
|- ( I ~~ 1o -> { <. U. I , 1 >. } : I --> ZZ ) |
36 |
|
zringbas |
|- ZZ = ( Base ` ZZring ) |
37 |
1 36 23
|
frgpup3 |
|- ( ( ZZring e. Grp /\ I e. _V /\ { <. U. I , 1 >. } : I --> ZZ ) -> E! f e. ( G GrpHom ZZring ) ( f o. ( varFGrp ` I ) ) = { <. U. I , 1 >. } ) |
38 |
28 19 35 37
|
mp3an2i |
|- ( I ~~ 1o -> E! f e. ( G GrpHom ZZring ) ( f o. ( varFGrp ` I ) ) = { <. U. I , 1 >. } ) |
39 |
38
|
adantr |
|- ( ( I ~~ 1o /\ x e. ( Base ` G ) ) -> E! f e. ( G GrpHom ZZring ) ( f o. ( varFGrp ` I ) ) = { <. U. I , 1 >. } ) |
40 |
|
reurex |
|- ( E! f e. ( G GrpHom ZZring ) ( f o. ( varFGrp ` I ) ) = { <. U. I , 1 >. } -> E. f e. ( G GrpHom ZZring ) ( f o. ( varFGrp ` I ) ) = { <. U. I , 1 >. } ) |
41 |
39 40
|
syl |
|- ( ( I ~~ 1o /\ x e. ( Base ` G ) ) -> E. f e. ( G GrpHom ZZring ) ( f o. ( varFGrp ` I ) ) = { <. U. I , 1 >. } ) |
42 |
|
fveq1 |
|- ( ( f o. ( varFGrp ` I ) ) = { <. U. I , 1 >. } -> ( ( f o. ( varFGrp ` I ) ) ` U. I ) = ( { <. U. I , 1 >. } ` U. I ) ) |
43 |
25 26
|
fvco3d |
|- ( I ~~ 1o -> ( ( f o. ( varFGrp ` I ) ) ` U. I ) = ( f ` ( ( varFGrp ` I ) ` U. I ) ) ) |
44 |
|
1z |
|- 1 e. ZZ |
45 |
|
fvsng |
|- ( ( U. I e. _V /\ 1 e. ZZ ) -> ( { <. U. I , 1 >. } ` U. I ) = 1 ) |
46 |
29 44 45
|
sylancl |
|- ( I ~~ 1o -> ( { <. U. I , 1 >. } ` U. I ) = 1 ) |
47 |
43 46
|
eqeq12d |
|- ( I ~~ 1o -> ( ( ( f o. ( varFGrp ` I ) ) ` U. I ) = ( { <. U. I , 1 >. } ` U. I ) <-> ( f ` ( ( varFGrp ` I ) ` U. I ) ) = 1 ) ) |
48 |
42 47
|
syl5ib |
|- ( I ~~ 1o -> ( ( f o. ( varFGrp ` I ) ) = { <. U. I , 1 >. } -> ( f ` ( ( varFGrp ` I ) ` U. I ) ) = 1 ) ) |
49 |
48
|
ad2antrr |
|- ( ( ( I ~~ 1o /\ x e. ( Base ` G ) ) /\ f e. ( G GrpHom ZZring ) ) -> ( ( f o. ( varFGrp ` I ) ) = { <. U. I , 1 >. } -> ( f ` ( ( varFGrp ` I ) ` U. I ) ) = 1 ) ) |
50 |
16 36
|
ghmf |
|- ( f e. ( G GrpHom ZZring ) -> f : ( Base ` G ) --> ZZ ) |
51 |
50
|
ad2antrl |
|- ( ( I ~~ 1o /\ ( f e. ( G GrpHom ZZring ) /\ ( f ` ( ( varFGrp ` I ) ` U. I ) ) = 1 ) ) -> f : ( Base ` G ) --> ZZ ) |
52 |
51
|
ffvelrnda |
|- ( ( ( I ~~ 1o /\ ( f e. ( G GrpHom ZZring ) /\ ( f ` ( ( varFGrp ` I ) ` U. I ) ) = 1 ) ) /\ x e. ( Base ` G ) ) -> ( f ` x ) e. ZZ ) |
53 |
52
|
an32s |
|- ( ( ( I ~~ 1o /\ x e. ( Base ` G ) ) /\ ( f e. ( G GrpHom ZZring ) /\ ( f ` ( ( varFGrp ` I ) ` U. I ) ) = 1 ) ) -> ( f ` x ) e. ZZ ) |
54 |
|
mptresid |
|- ( _I |` ( Base ` G ) ) = ( x e. ( Base ` G ) |-> x ) |
55 |
1 16 23
|
frgpup3 |
|- ( ( G e. Grp /\ I e. _V /\ ( varFGrp ` I ) : I --> ( Base ` G ) ) -> E! g e. ( G GrpHom G ) ( g o. ( varFGrp ` I ) ) = ( varFGrp ` I ) ) |
56 |
21 19 25 55
|
syl3anc |
|- ( I ~~ 1o -> E! g e. ( G GrpHom G ) ( g o. ( varFGrp ` I ) ) = ( varFGrp ` I ) ) |
57 |
|
reurmo |
|- ( E! g e. ( G GrpHom G ) ( g o. ( varFGrp ` I ) ) = ( varFGrp ` I ) -> E* g e. ( G GrpHom G ) ( g o. ( varFGrp ` I ) ) = ( varFGrp ` I ) ) |
58 |
56 57
|
syl |
|- ( I ~~ 1o -> E* g e. ( G GrpHom G ) ( g o. ( varFGrp ` I ) ) = ( varFGrp ` I ) ) |
59 |
58
|
adantr |
|- ( ( I ~~ 1o /\ ( f e. ( G GrpHom ZZring ) /\ ( f ` ( ( varFGrp ` I ) ` U. I ) ) = 1 ) ) -> E* g e. ( G GrpHom G ) ( g o. ( varFGrp ` I ) ) = ( varFGrp ` I ) ) |
60 |
21
|
adantr |
|- ( ( I ~~ 1o /\ ( f e. ( G GrpHom ZZring ) /\ ( f ` ( ( varFGrp ` I ) ` U. I ) ) = 1 ) ) -> G e. Grp ) |
61 |
16
|
idghm |
|- ( G e. Grp -> ( _I |` ( Base ` G ) ) e. ( G GrpHom G ) ) |
62 |
60 61
|
syl |
|- ( ( I ~~ 1o /\ ( f e. ( G GrpHom ZZring ) /\ ( f ` ( ( varFGrp ` I ) ` U. I ) ) = 1 ) ) -> ( _I |` ( Base ` G ) ) e. ( G GrpHom G ) ) |
63 |
25
|
adantr |
|- ( ( I ~~ 1o /\ ( f e. ( G GrpHom ZZring ) /\ ( f ` ( ( varFGrp ` I ) ` U. I ) ) = 1 ) ) -> ( varFGrp ` I ) : I --> ( Base ` G ) ) |
64 |
|
fcoi2 |
|- ( ( varFGrp ` I ) : I --> ( Base ` G ) -> ( ( _I |` ( Base ` G ) ) o. ( varFGrp ` I ) ) = ( varFGrp ` I ) ) |
65 |
63 64
|
syl |
|- ( ( I ~~ 1o /\ ( f e. ( G GrpHom ZZring ) /\ ( f ` ( ( varFGrp ` I ) ` U. I ) ) = 1 ) ) -> ( ( _I |` ( Base ` G ) ) o. ( varFGrp ` I ) ) = ( varFGrp ` I ) ) |
66 |
51
|
feqmptd |
|- ( ( I ~~ 1o /\ ( f e. ( G GrpHom ZZring ) /\ ( f ` ( ( varFGrp ` I ) ` U. I ) ) = 1 ) ) -> f = ( x e. ( Base ` G ) |-> ( f ` x ) ) ) |
67 |
|
eqidd |
|- ( ( I ~~ 1o /\ ( f e. ( G GrpHom ZZring ) /\ ( f ` ( ( varFGrp ` I ) ` U. I ) ) = 1 ) ) -> ( n e. ZZ |-> ( n ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) ) = ( n e. ZZ |-> ( n ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) ) ) |
68 |
|
oveq1 |
|- ( n = ( f ` x ) -> ( n ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) = ( ( f ` x ) ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) ) |
69 |
52 66 67 68
|
fmptco |
|- ( ( I ~~ 1o /\ ( f e. ( G GrpHom ZZring ) /\ ( f ` ( ( varFGrp ` I ) ` U. I ) ) = 1 ) ) -> ( ( n e. ZZ |-> ( n ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) ) o. f ) = ( x e. ( Base ` G ) |-> ( ( f ` x ) ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) ) ) |
70 |
27
|
adantr |
|- ( ( I ~~ 1o /\ ( f e. ( G GrpHom ZZring ) /\ ( f ` ( ( varFGrp ` I ) ` U. I ) ) = 1 ) ) -> ( ( varFGrp ` I ) ` U. I ) e. ( Base ` G ) ) |
71 |
|
eqid |
|- ( n e. ZZ |-> ( n ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) ) = ( n e. ZZ |-> ( n ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) ) |
72 |
17 71 16
|
mulgghm2 |
|- ( ( G e. Grp /\ ( ( varFGrp ` I ) ` U. I ) e. ( Base ` G ) ) -> ( n e. ZZ |-> ( n ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) ) e. ( ZZring GrpHom G ) ) |
73 |
60 70 72
|
syl2anc |
|- ( ( I ~~ 1o /\ ( f e. ( G GrpHom ZZring ) /\ ( f ` ( ( varFGrp ` I ) ` U. I ) ) = 1 ) ) -> ( n e. ZZ |-> ( n ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) ) e. ( ZZring GrpHom G ) ) |
74 |
|
simprl |
|- ( ( I ~~ 1o /\ ( f e. ( G GrpHom ZZring ) /\ ( f ` ( ( varFGrp ` I ) ` U. I ) ) = 1 ) ) -> f e. ( G GrpHom ZZring ) ) |
75 |
|
ghmco |
|- ( ( ( n e. ZZ |-> ( n ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) ) e. ( ZZring GrpHom G ) /\ f e. ( G GrpHom ZZring ) ) -> ( ( n e. ZZ |-> ( n ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) ) o. f ) e. ( G GrpHom G ) ) |
76 |
73 74 75
|
syl2anc |
|- ( ( I ~~ 1o /\ ( f e. ( G GrpHom ZZring ) /\ ( f ` ( ( varFGrp ` I ) ` U. I ) ) = 1 ) ) -> ( ( n e. ZZ |-> ( n ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) ) o. f ) e. ( G GrpHom G ) ) |
77 |
69 76
|
eqeltrrd |
|- ( ( I ~~ 1o /\ ( f e. ( G GrpHom ZZring ) /\ ( f ` ( ( varFGrp ` I ) ` U. I ) ) = 1 ) ) -> ( x e. ( Base ` G ) |-> ( ( f ` x ) ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) ) e. ( G GrpHom G ) ) |
78 |
33
|
adantr |
|- ( ( I ~~ 1o /\ ( f e. ( G GrpHom ZZring ) /\ ( f ` ( ( varFGrp ` I ) ` U. I ) ) = 1 ) ) -> I = { U. I } ) |
79 |
78
|
eleq2d |
|- ( ( I ~~ 1o /\ ( f e. ( G GrpHom ZZring ) /\ ( f ` ( ( varFGrp ` I ) ` U. I ) ) = 1 ) ) -> ( y e. I <-> y e. { U. I } ) ) |
80 |
|
simprr |
|- ( ( I ~~ 1o /\ ( f e. ( G GrpHom ZZring ) /\ ( f ` ( ( varFGrp ` I ) ` U. I ) ) = 1 ) ) -> ( f ` ( ( varFGrp ` I ) ` U. I ) ) = 1 ) |
81 |
80
|
oveq1d |
|- ( ( I ~~ 1o /\ ( f e. ( G GrpHom ZZring ) /\ ( f ` ( ( varFGrp ` I ) ` U. I ) ) = 1 ) ) -> ( ( f ` ( ( varFGrp ` I ) ` U. I ) ) ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) = ( 1 ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) ) |
82 |
16 17
|
mulg1 |
|- ( ( ( varFGrp ` I ) ` U. I ) e. ( Base ` G ) -> ( 1 ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) = ( ( varFGrp ` I ) ` U. I ) ) |
83 |
70 82
|
syl |
|- ( ( I ~~ 1o /\ ( f e. ( G GrpHom ZZring ) /\ ( f ` ( ( varFGrp ` I ) ` U. I ) ) = 1 ) ) -> ( 1 ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) = ( ( varFGrp ` I ) ` U. I ) ) |
84 |
81 83
|
eqtrd |
|- ( ( I ~~ 1o /\ ( f e. ( G GrpHom ZZring ) /\ ( f ` ( ( varFGrp ` I ) ` U. I ) ) = 1 ) ) -> ( ( f ` ( ( varFGrp ` I ) ` U. I ) ) ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) = ( ( varFGrp ` I ) ` U. I ) ) |
85 |
|
elsni |
|- ( y e. { U. I } -> y = U. I ) |
86 |
85
|
fveq2d |
|- ( y e. { U. I } -> ( ( varFGrp ` I ) ` y ) = ( ( varFGrp ` I ) ` U. I ) ) |
87 |
86
|
fveq2d |
|- ( y e. { U. I } -> ( f ` ( ( varFGrp ` I ) ` y ) ) = ( f ` ( ( varFGrp ` I ) ` U. I ) ) ) |
88 |
87
|
oveq1d |
|- ( y e. { U. I } -> ( ( f ` ( ( varFGrp ` I ) ` y ) ) ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) = ( ( f ` ( ( varFGrp ` I ) ` U. I ) ) ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) ) |
89 |
88 86
|
eqeq12d |
|- ( y e. { U. I } -> ( ( ( f ` ( ( varFGrp ` I ) ` y ) ) ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) = ( ( varFGrp ` I ) ` y ) <-> ( ( f ` ( ( varFGrp ` I ) ` U. I ) ) ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) = ( ( varFGrp ` I ) ` U. I ) ) ) |
90 |
84 89
|
syl5ibrcom |
|- ( ( I ~~ 1o /\ ( f e. ( G GrpHom ZZring ) /\ ( f ` ( ( varFGrp ` I ) ` U. I ) ) = 1 ) ) -> ( y e. { U. I } -> ( ( f ` ( ( varFGrp ` I ) ` y ) ) ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) = ( ( varFGrp ` I ) ` y ) ) ) |
91 |
79 90
|
sylbid |
|- ( ( I ~~ 1o /\ ( f e. ( G GrpHom ZZring ) /\ ( f ` ( ( varFGrp ` I ) ` U. I ) ) = 1 ) ) -> ( y e. I -> ( ( f ` ( ( varFGrp ` I ) ` y ) ) ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) = ( ( varFGrp ` I ) ` y ) ) ) |
92 |
91
|
imp |
|- ( ( ( I ~~ 1o /\ ( f e. ( G GrpHom ZZring ) /\ ( f ` ( ( varFGrp ` I ) ` U. I ) ) = 1 ) ) /\ y e. I ) -> ( ( f ` ( ( varFGrp ` I ) ` y ) ) ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) = ( ( varFGrp ` I ) ` y ) ) |
93 |
92
|
mpteq2dva |
|- ( ( I ~~ 1o /\ ( f e. ( G GrpHom ZZring ) /\ ( f ` ( ( varFGrp ` I ) ` U. I ) ) = 1 ) ) -> ( y e. I |-> ( ( f ` ( ( varFGrp ` I ) ` y ) ) ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) ) = ( y e. I |-> ( ( varFGrp ` I ) ` y ) ) ) |
94 |
63
|
ffvelrnda |
|- ( ( ( I ~~ 1o /\ ( f e. ( G GrpHom ZZring ) /\ ( f ` ( ( varFGrp ` I ) ` U. I ) ) = 1 ) ) /\ y e. I ) -> ( ( varFGrp ` I ) ` y ) e. ( Base ` G ) ) |
95 |
63
|
feqmptd |
|- ( ( I ~~ 1o /\ ( f e. ( G GrpHom ZZring ) /\ ( f ` ( ( varFGrp ` I ) ` U. I ) ) = 1 ) ) -> ( varFGrp ` I ) = ( y e. I |-> ( ( varFGrp ` I ) ` y ) ) ) |
96 |
|
eqidd |
|- ( ( I ~~ 1o /\ ( f e. ( G GrpHom ZZring ) /\ ( f ` ( ( varFGrp ` I ) ` U. I ) ) = 1 ) ) -> ( x e. ( Base ` G ) |-> ( ( f ` x ) ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) ) = ( x e. ( Base ` G ) |-> ( ( f ` x ) ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) ) ) |
97 |
|
fveq2 |
|- ( x = ( ( varFGrp ` I ) ` y ) -> ( f ` x ) = ( f ` ( ( varFGrp ` I ) ` y ) ) ) |
98 |
97
|
oveq1d |
|- ( x = ( ( varFGrp ` I ) ` y ) -> ( ( f ` x ) ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) = ( ( f ` ( ( varFGrp ` I ) ` y ) ) ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) ) |
99 |
94 95 96 98
|
fmptco |
|- ( ( I ~~ 1o /\ ( f e. ( G GrpHom ZZring ) /\ ( f ` ( ( varFGrp ` I ) ` U. I ) ) = 1 ) ) -> ( ( x e. ( Base ` G ) |-> ( ( f ` x ) ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) ) o. ( varFGrp ` I ) ) = ( y e. I |-> ( ( f ` ( ( varFGrp ` I ) ` y ) ) ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) ) ) |
100 |
93 99 95
|
3eqtr4d |
|- ( ( I ~~ 1o /\ ( f e. ( G GrpHom ZZring ) /\ ( f ` ( ( varFGrp ` I ) ` U. I ) ) = 1 ) ) -> ( ( x e. ( Base ` G ) |-> ( ( f ` x ) ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) ) o. ( varFGrp ` I ) ) = ( varFGrp ` I ) ) |
101 |
|
coeq1 |
|- ( g = ( _I |` ( Base ` G ) ) -> ( g o. ( varFGrp ` I ) ) = ( ( _I |` ( Base ` G ) ) o. ( varFGrp ` I ) ) ) |
102 |
101
|
eqeq1d |
|- ( g = ( _I |` ( Base ` G ) ) -> ( ( g o. ( varFGrp ` I ) ) = ( varFGrp ` I ) <-> ( ( _I |` ( Base ` G ) ) o. ( varFGrp ` I ) ) = ( varFGrp ` I ) ) ) |
103 |
|
coeq1 |
|- ( g = ( x e. ( Base ` G ) |-> ( ( f ` x ) ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) ) -> ( g o. ( varFGrp ` I ) ) = ( ( x e. ( Base ` G ) |-> ( ( f ` x ) ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) ) o. ( varFGrp ` I ) ) ) |
104 |
103
|
eqeq1d |
|- ( g = ( x e. ( Base ` G ) |-> ( ( f ` x ) ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) ) -> ( ( g o. ( varFGrp ` I ) ) = ( varFGrp ` I ) <-> ( ( x e. ( Base ` G ) |-> ( ( f ` x ) ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) ) o. ( varFGrp ` I ) ) = ( varFGrp ` I ) ) ) |
105 |
102 104
|
rmoi |
|- ( ( E* g e. ( G GrpHom G ) ( g o. ( varFGrp ` I ) ) = ( varFGrp ` I ) /\ ( ( _I |` ( Base ` G ) ) e. ( G GrpHom G ) /\ ( ( _I |` ( Base ` G ) ) o. ( varFGrp ` I ) ) = ( varFGrp ` I ) ) /\ ( ( x e. ( Base ` G ) |-> ( ( f ` x ) ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) ) e. ( G GrpHom G ) /\ ( ( x e. ( Base ` G ) |-> ( ( f ` x ) ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) ) o. ( varFGrp ` I ) ) = ( varFGrp ` I ) ) ) -> ( _I |` ( Base ` G ) ) = ( x e. ( Base ` G ) |-> ( ( f ` x ) ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) ) ) |
106 |
59 62 65 77 100 105
|
syl122anc |
|- ( ( I ~~ 1o /\ ( f e. ( G GrpHom ZZring ) /\ ( f ` ( ( varFGrp ` I ) ` U. I ) ) = 1 ) ) -> ( _I |` ( Base ` G ) ) = ( x e. ( Base ` G ) |-> ( ( f ` x ) ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) ) ) |
107 |
54 106
|
eqtr3id |
|- ( ( I ~~ 1o /\ ( f e. ( G GrpHom ZZring ) /\ ( f ` ( ( varFGrp ` I ) ` U. I ) ) = 1 ) ) -> ( x e. ( Base ` G ) |-> x ) = ( x e. ( Base ` G ) |-> ( ( f ` x ) ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) ) ) |
108 |
|
mpteqb |
|- ( A. x e. ( Base ` G ) x e. ( Base ` G ) -> ( ( x e. ( Base ` G ) |-> x ) = ( x e. ( Base ` G ) |-> ( ( f ` x ) ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) ) <-> A. x e. ( Base ` G ) x = ( ( f ` x ) ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) ) ) |
109 |
|
id |
|- ( x e. ( Base ` G ) -> x e. ( Base ` G ) ) |
110 |
108 109
|
mprg |
|- ( ( x e. ( Base ` G ) |-> x ) = ( x e. ( Base ` G ) |-> ( ( f ` x ) ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) ) <-> A. x e. ( Base ` G ) x = ( ( f ` x ) ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) ) |
111 |
107 110
|
sylib |
|- ( ( I ~~ 1o /\ ( f e. ( G GrpHom ZZring ) /\ ( f ` ( ( varFGrp ` I ) ` U. I ) ) = 1 ) ) -> A. x e. ( Base ` G ) x = ( ( f ` x ) ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) ) |
112 |
111
|
r19.21bi |
|- ( ( ( I ~~ 1o /\ ( f e. ( G GrpHom ZZring ) /\ ( f ` ( ( varFGrp ` I ) ` U. I ) ) = 1 ) ) /\ x e. ( Base ` G ) ) -> x = ( ( f ` x ) ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) ) |
113 |
112
|
an32s |
|- ( ( ( I ~~ 1o /\ x e. ( Base ` G ) ) /\ ( f e. ( G GrpHom ZZring ) /\ ( f ` ( ( varFGrp ` I ) ` U. I ) ) = 1 ) ) -> x = ( ( f ` x ) ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) ) |
114 |
68
|
rspceeqv |
|- ( ( ( f ` x ) e. ZZ /\ x = ( ( f ` x ) ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) ) -> E. n e. ZZ x = ( n ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) ) |
115 |
53 113 114
|
syl2anc |
|- ( ( ( I ~~ 1o /\ x e. ( Base ` G ) ) /\ ( f e. ( G GrpHom ZZring ) /\ ( f ` ( ( varFGrp ` I ) ` U. I ) ) = 1 ) ) -> E. n e. ZZ x = ( n ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) ) |
116 |
115
|
expr |
|- ( ( ( I ~~ 1o /\ x e. ( Base ` G ) ) /\ f e. ( G GrpHom ZZring ) ) -> ( ( f ` ( ( varFGrp ` I ) ` U. I ) ) = 1 -> E. n e. ZZ x = ( n ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) ) ) |
117 |
49 116
|
syld |
|- ( ( ( I ~~ 1o /\ x e. ( Base ` G ) ) /\ f e. ( G GrpHom ZZring ) ) -> ( ( f o. ( varFGrp ` I ) ) = { <. U. I , 1 >. } -> E. n e. ZZ x = ( n ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) ) ) |
118 |
117
|
rexlimdva |
|- ( ( I ~~ 1o /\ x e. ( Base ` G ) ) -> ( E. f e. ( G GrpHom ZZring ) ( f o. ( varFGrp ` I ) ) = { <. U. I , 1 >. } -> E. n e. ZZ x = ( n ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) ) ) |
119 |
41 118
|
mpd |
|- ( ( I ~~ 1o /\ x e. ( Base ` G ) ) -> E. n e. ZZ x = ( n ( .g ` G ) ( ( varFGrp ` I ) ` U. I ) ) ) |
120 |
16 17 21 27 119
|
iscygd |
|- ( I ~~ 1o -> G e. CycGrp ) |
121 |
15 120
|
jaoi |
|- ( ( I ~< 1o \/ I ~~ 1o ) -> G e. CycGrp ) |
122 |
2 121
|
sylbi |
|- ( I ~<_ 1o -> G e. CycGrp ) |
123 |
|
cygabl |
|- ( G e. CycGrp -> G e. Abel ) |
124 |
1
|
frgpnabl |
|- ( 1o ~< I -> -. G e. Abel ) |
125 |
124
|
con2i |
|- ( G e. Abel -> -. 1o ~< I ) |
126 |
|
ablgrp |
|- ( G e. Abel -> G e. Grp ) |
127 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
128 |
16 127
|
grpidcl |
|- ( G e. Grp -> ( 0g ` G ) e. ( Base ` G ) ) |
129 |
1 16
|
elbasfv |
|- ( ( 0g ` G ) e. ( Base ` G ) -> I e. _V ) |
130 |
126 128 129
|
3syl |
|- ( G e. Abel -> I e. _V ) |
131 |
|
1onn |
|- 1o e. _om |
132 |
|
nnfi |
|- ( 1o e. _om -> 1o e. Fin ) |
133 |
131 132
|
ax-mp |
|- 1o e. Fin |
134 |
|
fidomtri2 |
|- ( ( I e. _V /\ 1o e. Fin ) -> ( I ~<_ 1o <-> -. 1o ~< I ) ) |
135 |
130 133 134
|
sylancl |
|- ( G e. Abel -> ( I ~<_ 1o <-> -. 1o ~< I ) ) |
136 |
125 135
|
mpbird |
|- ( G e. Abel -> I ~<_ 1o ) |
137 |
123 136
|
syl |
|- ( G e. CycGrp -> I ~<_ 1o ) |
138 |
122 137
|
impbii |
|- ( I ~<_ 1o <-> G e. CycGrp ) |