Description: The free group is a group. (Contributed by Mario Carneiro, 1-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | frgpgrp.g | |- G = ( freeGrp ` I ) |
|
Assertion | frgpgrp | |- ( I e. V -> G e. Grp ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frgpgrp.g | |- G = ( freeGrp ` I ) |
|
2 | eqid | |- ( ~FG ` I ) = ( ~FG ` I ) |
|
3 | 1 2 | frgp0 | |- ( I e. V -> ( G e. Grp /\ [ (/) ] ( ~FG ` I ) = ( 0g ` G ) ) ) |
4 | 3 | simpld | |- ( I e. V -> G e. Grp ) |