Step |
Hyp |
Ref |
Expression |
1 |
|
frgpadd.w |
|- W = ( _I ` Word ( I X. 2o ) ) |
2 |
|
frgpadd.g |
|- G = ( freeGrp ` I ) |
3 |
|
frgpadd.r |
|- .~ = ( ~FG ` I ) |
4 |
|
frgpinv.n |
|- N = ( invg ` G ) |
5 |
|
frgpinv.m |
|- M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) |
6 |
|
fviss |
|- ( _I ` Word ( I X. 2o ) ) C_ Word ( I X. 2o ) |
7 |
1 6
|
eqsstri |
|- W C_ Word ( I X. 2o ) |
8 |
7
|
sseli |
|- ( A e. W -> A e. Word ( I X. 2o ) ) |
9 |
|
revcl |
|- ( A e. Word ( I X. 2o ) -> ( reverse ` A ) e. Word ( I X. 2o ) ) |
10 |
8 9
|
syl |
|- ( A e. W -> ( reverse ` A ) e. Word ( I X. 2o ) ) |
11 |
5
|
efgmf |
|- M : ( I X. 2o ) --> ( I X. 2o ) |
12 |
|
wrdco |
|- ( ( ( reverse ` A ) e. Word ( I X. 2o ) /\ M : ( I X. 2o ) --> ( I X. 2o ) ) -> ( M o. ( reverse ` A ) ) e. Word ( I X. 2o ) ) |
13 |
10 11 12
|
sylancl |
|- ( A e. W -> ( M o. ( reverse ` A ) ) e. Word ( I X. 2o ) ) |
14 |
1
|
efgrcl |
|- ( A e. W -> ( I e. _V /\ W = Word ( I X. 2o ) ) ) |
15 |
14
|
simprd |
|- ( A e. W -> W = Word ( I X. 2o ) ) |
16 |
13 15
|
eleqtrrd |
|- ( A e. W -> ( M o. ( reverse ` A ) ) e. W ) |
17 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
18 |
1 2 3 17
|
frgpadd |
|- ( ( A e. W /\ ( M o. ( reverse ` A ) ) e. W ) -> ( [ A ] .~ ( +g ` G ) [ ( M o. ( reverse ` A ) ) ] .~ ) = [ ( A ++ ( M o. ( reverse ` A ) ) ) ] .~ ) |
19 |
16 18
|
mpdan |
|- ( A e. W -> ( [ A ] .~ ( +g ` G ) [ ( M o. ( reverse ` A ) ) ] .~ ) = [ ( A ++ ( M o. ( reverse ` A ) ) ) ] .~ ) |
20 |
1 3
|
efger |
|- .~ Er W |
21 |
20
|
a1i |
|- ( A e. W -> .~ Er W ) |
22 |
|
eqid |
|- ( v e. W |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( M ` w ) "> >. ) ) ) = ( v e. W |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( M ` w ) "> >. ) ) ) |
23 |
1 3 5 22
|
efginvrel2 |
|- ( A e. W -> ( A ++ ( M o. ( reverse ` A ) ) ) .~ (/) ) |
24 |
21 23
|
erthi |
|- ( A e. W -> [ ( A ++ ( M o. ( reverse ` A ) ) ) ] .~ = [ (/) ] .~ ) |
25 |
2 3
|
frgp0 |
|- ( I e. _V -> ( G e. Grp /\ [ (/) ] .~ = ( 0g ` G ) ) ) |
26 |
25
|
adantr |
|- ( ( I e. _V /\ W = Word ( I X. 2o ) ) -> ( G e. Grp /\ [ (/) ] .~ = ( 0g ` G ) ) ) |
27 |
14 26
|
syl |
|- ( A e. W -> ( G e. Grp /\ [ (/) ] .~ = ( 0g ` G ) ) ) |
28 |
27
|
simprd |
|- ( A e. W -> [ (/) ] .~ = ( 0g ` G ) ) |
29 |
19 24 28
|
3eqtrd |
|- ( A e. W -> ( [ A ] .~ ( +g ` G ) [ ( M o. ( reverse ` A ) ) ] .~ ) = ( 0g ` G ) ) |
30 |
27
|
simpld |
|- ( A e. W -> G e. Grp ) |
31 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
32 |
2 3 1 31
|
frgpeccl |
|- ( A e. W -> [ A ] .~ e. ( Base ` G ) ) |
33 |
2 3 1 31
|
frgpeccl |
|- ( ( M o. ( reverse ` A ) ) e. W -> [ ( M o. ( reverse ` A ) ) ] .~ e. ( Base ` G ) ) |
34 |
16 33
|
syl |
|- ( A e. W -> [ ( M o. ( reverse ` A ) ) ] .~ e. ( Base ` G ) ) |
35 |
|
eqid |
|- ( 0g ` G ) = ( 0g ` G ) |
36 |
31 17 35 4
|
grpinvid1 |
|- ( ( G e. Grp /\ [ A ] .~ e. ( Base ` G ) /\ [ ( M o. ( reverse ` A ) ) ] .~ e. ( Base ` G ) ) -> ( ( N ` [ A ] .~ ) = [ ( M o. ( reverse ` A ) ) ] .~ <-> ( [ A ] .~ ( +g ` G ) [ ( M o. ( reverse ` A ) ) ] .~ ) = ( 0g ` G ) ) ) |
37 |
30 32 34 36
|
syl3anc |
|- ( A e. W -> ( ( N ` [ A ] .~ ) = [ ( M o. ( reverse ` A ) ) ] .~ <-> ( [ A ] .~ ( +g ` G ) [ ( M o. ( reverse ` A ) ) ] .~ ) = ( 0g ` G ) ) ) |
38 |
29 37
|
mpbird |
|- ( A e. W -> ( N ` [ A ] .~ ) = [ ( M o. ( reverse ` A ) ) ] .~ ) |