Step |
Hyp |
Ref |
Expression |
1 |
|
frgpnabl.g |
|- G = ( freeGrp ` I ) |
2 |
|
relsdom |
|- Rel ~< |
3 |
2
|
brrelex2i |
|- ( 1o ~< I -> I e. _V ) |
4 |
|
1sdom |
|- ( I e. _V -> ( 1o ~< I <-> E. a e. I E. b e. I -. a = b ) ) |
5 |
3 4
|
syl |
|- ( 1o ~< I -> ( 1o ~< I <-> E. a e. I E. b e. I -. a = b ) ) |
6 |
5
|
ibi |
|- ( 1o ~< I -> E. a e. I E. b e. I -. a = b ) |
7 |
|
eqid |
|- ( _I ` Word ( I X. 2o ) ) = ( _I ` Word ( I X. 2o ) ) |
8 |
|
eqid |
|- ( ~FG ` I ) = ( ~FG ` I ) |
9 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
10 |
|
eqid |
|- ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) |
11 |
|
eqid |
|- ( v e. ( _I ` Word ( I X. 2o ) ) |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) ` w ) "> >. ) ) ) = ( v e. ( _I ` Word ( I X. 2o ) ) |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) ` w ) "> >. ) ) ) |
12 |
|
eqid |
|- ( ( _I ` Word ( I X. 2o ) ) \ U_ x e. ( _I ` Word ( I X. 2o ) ) ran ( ( v e. ( _I ` Word ( I X. 2o ) ) |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) ` w ) "> >. ) ) ) ` x ) ) = ( ( _I ` Word ( I X. 2o ) ) \ U_ x e. ( _I ` Word ( I X. 2o ) ) ran ( ( v e. ( _I ` Word ( I X. 2o ) ) |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) ` w ) "> >. ) ) ) ` x ) ) |
13 |
|
eqid |
|- ( varFGrp ` I ) = ( varFGrp ` I ) |
14 |
3
|
ad2antrr |
|- ( ( ( 1o ~< I /\ ( a e. I /\ b e. I ) ) /\ G e. Abel ) -> I e. _V ) |
15 |
|
simplrl |
|- ( ( ( 1o ~< I /\ ( a e. I /\ b e. I ) ) /\ G e. Abel ) -> a e. I ) |
16 |
|
simplrr |
|- ( ( ( 1o ~< I /\ ( a e. I /\ b e. I ) ) /\ G e. Abel ) -> b e. I ) |
17 |
|
simpr |
|- ( ( ( 1o ~< I /\ ( a e. I /\ b e. I ) ) /\ G e. Abel ) -> G e. Abel ) |
18 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
19 |
8 13 1 18
|
vrgpf |
|- ( I e. _V -> ( varFGrp ` I ) : I --> ( Base ` G ) ) |
20 |
14 19
|
syl |
|- ( ( ( 1o ~< I /\ ( a e. I /\ b e. I ) ) /\ G e. Abel ) -> ( varFGrp ` I ) : I --> ( Base ` G ) ) |
21 |
20 15
|
ffvelrnd |
|- ( ( ( 1o ~< I /\ ( a e. I /\ b e. I ) ) /\ G e. Abel ) -> ( ( varFGrp ` I ) ` a ) e. ( Base ` G ) ) |
22 |
20 16
|
ffvelrnd |
|- ( ( ( 1o ~< I /\ ( a e. I /\ b e. I ) ) /\ G e. Abel ) -> ( ( varFGrp ` I ) ` b ) e. ( Base ` G ) ) |
23 |
18 9
|
ablcom |
|- ( ( G e. Abel /\ ( ( varFGrp ` I ) ` a ) e. ( Base ` G ) /\ ( ( varFGrp ` I ) ` b ) e. ( Base ` G ) ) -> ( ( ( varFGrp ` I ) ` a ) ( +g ` G ) ( ( varFGrp ` I ) ` b ) ) = ( ( ( varFGrp ` I ) ` b ) ( +g ` G ) ( ( varFGrp ` I ) ` a ) ) ) |
24 |
17 21 22 23
|
syl3anc |
|- ( ( ( 1o ~< I /\ ( a e. I /\ b e. I ) ) /\ G e. Abel ) -> ( ( ( varFGrp ` I ) ` a ) ( +g ` G ) ( ( varFGrp ` I ) ` b ) ) = ( ( ( varFGrp ` I ) ` b ) ( +g ` G ) ( ( varFGrp ` I ) ` a ) ) ) |
25 |
1 7 8 9 10 11 12 13 14 15 16 24
|
frgpnabllem2 |
|- ( ( ( 1o ~< I /\ ( a e. I /\ b e. I ) ) /\ G e. Abel ) -> a = b ) |
26 |
25
|
ex |
|- ( ( 1o ~< I /\ ( a e. I /\ b e. I ) ) -> ( G e. Abel -> a = b ) ) |
27 |
26
|
con3d |
|- ( ( 1o ~< I /\ ( a e. I /\ b e. I ) ) -> ( -. a = b -> -. G e. Abel ) ) |
28 |
27
|
rexlimdvva |
|- ( 1o ~< I -> ( E. a e. I E. b e. I -. a = b -> -. G e. Abel ) ) |
29 |
6 28
|
mpd |
|- ( 1o ~< I -> -. G e. Abel ) |