Step |
Hyp |
Ref |
Expression |
1 |
|
frgpnabl.g |
|- G = ( freeGrp ` I ) |
2 |
|
frgpnabl.w |
|- W = ( _I ` Word ( I X. 2o ) ) |
3 |
|
frgpnabl.r |
|- .~ = ( ~FG ` I ) |
4 |
|
frgpnabl.p |
|- .+ = ( +g ` G ) |
5 |
|
frgpnabl.m |
|- M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) |
6 |
|
frgpnabl.t |
|- T = ( v e. W |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( M ` w ) "> >. ) ) ) |
7 |
|
frgpnabl.d |
|- D = ( W \ U_ x e. W ran ( T ` x ) ) |
8 |
|
frgpnabl.u |
|- U = ( varFGrp ` I ) |
9 |
|
frgpnabl.i |
|- ( ph -> I e. V ) |
10 |
|
frgpnabl.a |
|- ( ph -> A e. I ) |
11 |
|
frgpnabl.b |
|- ( ph -> B e. I ) |
12 |
|
0ex |
|- (/) e. _V |
13 |
12
|
prid1 |
|- (/) e. { (/) , 1o } |
14 |
|
df2o3 |
|- 2o = { (/) , 1o } |
15 |
13 14
|
eleqtrri |
|- (/) e. 2o |
16 |
|
opelxpi |
|- ( ( A e. I /\ (/) e. 2o ) -> <. A , (/) >. e. ( I X. 2o ) ) |
17 |
10 15 16
|
sylancl |
|- ( ph -> <. A , (/) >. e. ( I X. 2o ) ) |
18 |
|
opelxpi |
|- ( ( B e. I /\ (/) e. 2o ) -> <. B , (/) >. e. ( I X. 2o ) ) |
19 |
11 15 18
|
sylancl |
|- ( ph -> <. B , (/) >. e. ( I X. 2o ) ) |
20 |
17 19
|
s2cld |
|- ( ph -> <" <. A , (/) >. <. B , (/) >. "> e. Word ( I X. 2o ) ) |
21 |
|
2on |
|- 2o e. On |
22 |
|
xpexg |
|- ( ( I e. V /\ 2o e. On ) -> ( I X. 2o ) e. _V ) |
23 |
9 21 22
|
sylancl |
|- ( ph -> ( I X. 2o ) e. _V ) |
24 |
|
wrdexg |
|- ( ( I X. 2o ) e. _V -> Word ( I X. 2o ) e. _V ) |
25 |
|
fvi |
|- ( Word ( I X. 2o ) e. _V -> ( _I ` Word ( I X. 2o ) ) = Word ( I X. 2o ) ) |
26 |
23 24 25
|
3syl |
|- ( ph -> ( _I ` Word ( I X. 2o ) ) = Word ( I X. 2o ) ) |
27 |
2 26
|
eqtrid |
|- ( ph -> W = Word ( I X. 2o ) ) |
28 |
20 27
|
eleqtrrd |
|- ( ph -> <" <. A , (/) >. <. B , (/) >. "> e. W ) |
29 |
|
1n0 |
|- 1o =/= (/) |
30 |
|
2cn |
|- 2 e. CC |
31 |
30
|
addid2i |
|- ( 0 + 2 ) = 2 |
32 |
|
s2len |
|- ( # ` <" <. A , (/) >. <. B , (/) >. "> ) = 2 |
33 |
31 32
|
eqtr4i |
|- ( 0 + 2 ) = ( # ` <" <. A , (/) >. <. B , (/) >. "> ) |
34 |
2 3 5 6
|
efgtlen |
|- ( ( x e. W /\ <" <. A , (/) >. <. B , (/) >. "> e. ran ( T ` x ) ) -> ( # ` <" <. A , (/) >. <. B , (/) >. "> ) = ( ( # ` x ) + 2 ) ) |
35 |
34
|
adantll |
|- ( ( ( ph /\ x e. W ) /\ <" <. A , (/) >. <. B , (/) >. "> e. ran ( T ` x ) ) -> ( # ` <" <. A , (/) >. <. B , (/) >. "> ) = ( ( # ` x ) + 2 ) ) |
36 |
33 35
|
eqtrid |
|- ( ( ( ph /\ x e. W ) /\ <" <. A , (/) >. <. B , (/) >. "> e. ran ( T ` x ) ) -> ( 0 + 2 ) = ( ( # ` x ) + 2 ) ) |
37 |
36
|
ex |
|- ( ( ph /\ x e. W ) -> ( <" <. A , (/) >. <. B , (/) >. "> e. ran ( T ` x ) -> ( 0 + 2 ) = ( ( # ` x ) + 2 ) ) ) |
38 |
|
0cnd |
|- ( ( ph /\ x e. W ) -> 0 e. CC ) |
39 |
|
simpr |
|- ( ( ph /\ x e. W ) -> x e. W ) |
40 |
2
|
efgrcl |
|- ( x e. W -> ( I e. _V /\ W = Word ( I X. 2o ) ) ) |
41 |
40
|
simprd |
|- ( x e. W -> W = Word ( I X. 2o ) ) |
42 |
41
|
adantl |
|- ( ( ph /\ x e. W ) -> W = Word ( I X. 2o ) ) |
43 |
39 42
|
eleqtrd |
|- ( ( ph /\ x e. W ) -> x e. Word ( I X. 2o ) ) |
44 |
|
lencl |
|- ( x e. Word ( I X. 2o ) -> ( # ` x ) e. NN0 ) |
45 |
43 44
|
syl |
|- ( ( ph /\ x e. W ) -> ( # ` x ) e. NN0 ) |
46 |
45
|
nn0cnd |
|- ( ( ph /\ x e. W ) -> ( # ` x ) e. CC ) |
47 |
|
2cnd |
|- ( ( ph /\ x e. W ) -> 2 e. CC ) |
48 |
38 46 47
|
addcan2d |
|- ( ( ph /\ x e. W ) -> ( ( 0 + 2 ) = ( ( # ` x ) + 2 ) <-> 0 = ( # ` x ) ) ) |
49 |
37 48
|
sylibd |
|- ( ( ph /\ x e. W ) -> ( <" <. A , (/) >. <. B , (/) >. "> e. ran ( T ` x ) -> 0 = ( # ` x ) ) ) |
50 |
2 3 5 6
|
efgtf |
|- ( (/) e. W -> ( ( T ` (/) ) = ( a e. ( 0 ... ( # ` (/) ) ) , b e. ( I X. 2o ) |-> ( (/) splice <. a , a , <" b ( M ` b ) "> >. ) ) /\ ( T ` (/) ) : ( ( 0 ... ( # ` (/) ) ) X. ( I X. 2o ) ) --> W ) ) |
51 |
50
|
adantl |
|- ( ( ph /\ (/) e. W ) -> ( ( T ` (/) ) = ( a e. ( 0 ... ( # ` (/) ) ) , b e. ( I X. 2o ) |-> ( (/) splice <. a , a , <" b ( M ` b ) "> >. ) ) /\ ( T ` (/) ) : ( ( 0 ... ( # ` (/) ) ) X. ( I X. 2o ) ) --> W ) ) |
52 |
51
|
simpld |
|- ( ( ph /\ (/) e. W ) -> ( T ` (/) ) = ( a e. ( 0 ... ( # ` (/) ) ) , b e. ( I X. 2o ) |-> ( (/) splice <. a , a , <" b ( M ` b ) "> >. ) ) ) |
53 |
52
|
rneqd |
|- ( ( ph /\ (/) e. W ) -> ran ( T ` (/) ) = ran ( a e. ( 0 ... ( # ` (/) ) ) , b e. ( I X. 2o ) |-> ( (/) splice <. a , a , <" b ( M ` b ) "> >. ) ) ) |
54 |
53
|
eleq2d |
|- ( ( ph /\ (/) e. W ) -> ( <" <. A , (/) >. <. B , (/) >. "> e. ran ( T ` (/) ) <-> <" <. A , (/) >. <. B , (/) >. "> e. ran ( a e. ( 0 ... ( # ` (/) ) ) , b e. ( I X. 2o ) |-> ( (/) splice <. a , a , <" b ( M ` b ) "> >. ) ) ) ) |
55 |
|
eqid |
|- ( a e. ( 0 ... ( # ` (/) ) ) , b e. ( I X. 2o ) |-> ( (/) splice <. a , a , <" b ( M ` b ) "> >. ) ) = ( a e. ( 0 ... ( # ` (/) ) ) , b e. ( I X. 2o ) |-> ( (/) splice <. a , a , <" b ( M ` b ) "> >. ) ) |
56 |
|
ovex |
|- ( (/) splice <. a , a , <" b ( M ` b ) "> >. ) e. _V |
57 |
55 56
|
elrnmpo |
|- ( <" <. A , (/) >. <. B , (/) >. "> e. ran ( a e. ( 0 ... ( # ` (/) ) ) , b e. ( I X. 2o ) |-> ( (/) splice <. a , a , <" b ( M ` b ) "> >. ) ) <-> E. a e. ( 0 ... ( # ` (/) ) ) E. b e. ( I X. 2o ) <" <. A , (/) >. <. B , (/) >. "> = ( (/) splice <. a , a , <" b ( M ` b ) "> >. ) ) |
58 |
|
wrd0 |
|- (/) e. Word ( I X. 2o ) |
59 |
58
|
a1i |
|- ( ( ( ph /\ (/) e. W ) /\ ( a e. ( 0 ... ( # ` (/) ) ) /\ b e. ( I X. 2o ) ) ) -> (/) e. Word ( I X. 2o ) ) |
60 |
|
simprr |
|- ( ( ( ph /\ (/) e. W ) /\ ( a e. ( 0 ... ( # ` (/) ) ) /\ b e. ( I X. 2o ) ) ) -> b e. ( I X. 2o ) ) |
61 |
5
|
efgmf |
|- M : ( I X. 2o ) --> ( I X. 2o ) |
62 |
61
|
ffvelrni |
|- ( b e. ( I X. 2o ) -> ( M ` b ) e. ( I X. 2o ) ) |
63 |
60 62
|
syl |
|- ( ( ( ph /\ (/) e. W ) /\ ( a e. ( 0 ... ( # ` (/) ) ) /\ b e. ( I X. 2o ) ) ) -> ( M ` b ) e. ( I X. 2o ) ) |
64 |
60 63
|
s2cld |
|- ( ( ( ph /\ (/) e. W ) /\ ( a e. ( 0 ... ( # ` (/) ) ) /\ b e. ( I X. 2o ) ) ) -> <" b ( M ` b ) "> e. Word ( I X. 2o ) ) |
65 |
|
ccatidid |
|- ( (/) ++ (/) ) = (/) |
66 |
65
|
oveq1i |
|- ( ( (/) ++ (/) ) ++ (/) ) = ( (/) ++ (/) ) |
67 |
66 65
|
eqtr2i |
|- (/) = ( ( (/) ++ (/) ) ++ (/) ) |
68 |
67
|
a1i |
|- ( ( ( ph /\ (/) e. W ) /\ ( a e. ( 0 ... ( # ` (/) ) ) /\ b e. ( I X. 2o ) ) ) -> (/) = ( ( (/) ++ (/) ) ++ (/) ) ) |
69 |
|
simprl |
|- ( ( ( ph /\ (/) e. W ) /\ ( a e. ( 0 ... ( # ` (/) ) ) /\ b e. ( I X. 2o ) ) ) -> a e. ( 0 ... ( # ` (/) ) ) ) |
70 |
|
hash0 |
|- ( # ` (/) ) = 0 |
71 |
70
|
oveq2i |
|- ( 0 ... ( # ` (/) ) ) = ( 0 ... 0 ) |
72 |
69 71
|
eleqtrdi |
|- ( ( ( ph /\ (/) e. W ) /\ ( a e. ( 0 ... ( # ` (/) ) ) /\ b e. ( I X. 2o ) ) ) -> a e. ( 0 ... 0 ) ) |
73 |
|
elfz1eq |
|- ( a e. ( 0 ... 0 ) -> a = 0 ) |
74 |
72 73
|
syl |
|- ( ( ( ph /\ (/) e. W ) /\ ( a e. ( 0 ... ( # ` (/) ) ) /\ b e. ( I X. 2o ) ) ) -> a = 0 ) |
75 |
74 70
|
eqtr4di |
|- ( ( ( ph /\ (/) e. W ) /\ ( a e. ( 0 ... ( # ` (/) ) ) /\ b e. ( I X. 2o ) ) ) -> a = ( # ` (/) ) ) |
76 |
70
|
oveq2i |
|- ( a + ( # ` (/) ) ) = ( a + 0 ) |
77 |
|
0cn |
|- 0 e. CC |
78 |
74 77
|
eqeltrdi |
|- ( ( ( ph /\ (/) e. W ) /\ ( a e. ( 0 ... ( # ` (/) ) ) /\ b e. ( I X. 2o ) ) ) -> a e. CC ) |
79 |
78
|
addid1d |
|- ( ( ( ph /\ (/) e. W ) /\ ( a e. ( 0 ... ( # ` (/) ) ) /\ b e. ( I X. 2o ) ) ) -> ( a + 0 ) = a ) |
80 |
76 79
|
eqtr2id |
|- ( ( ( ph /\ (/) e. W ) /\ ( a e. ( 0 ... ( # ` (/) ) ) /\ b e. ( I X. 2o ) ) ) -> a = ( a + ( # ` (/) ) ) ) |
81 |
59 59 59 64 68 75 80
|
splval2 |
|- ( ( ( ph /\ (/) e. W ) /\ ( a e. ( 0 ... ( # ` (/) ) ) /\ b e. ( I X. 2o ) ) ) -> ( (/) splice <. a , a , <" b ( M ` b ) "> >. ) = ( ( (/) ++ <" b ( M ` b ) "> ) ++ (/) ) ) |
82 |
|
ccatlid |
|- ( <" b ( M ` b ) "> e. Word ( I X. 2o ) -> ( (/) ++ <" b ( M ` b ) "> ) = <" b ( M ` b ) "> ) |
83 |
82
|
oveq1d |
|- ( <" b ( M ` b ) "> e. Word ( I X. 2o ) -> ( ( (/) ++ <" b ( M ` b ) "> ) ++ (/) ) = ( <" b ( M ` b ) "> ++ (/) ) ) |
84 |
|
ccatrid |
|- ( <" b ( M ` b ) "> e. Word ( I X. 2o ) -> ( <" b ( M ` b ) "> ++ (/) ) = <" b ( M ` b ) "> ) |
85 |
83 84
|
eqtrd |
|- ( <" b ( M ` b ) "> e. Word ( I X. 2o ) -> ( ( (/) ++ <" b ( M ` b ) "> ) ++ (/) ) = <" b ( M ` b ) "> ) |
86 |
64 85
|
syl |
|- ( ( ( ph /\ (/) e. W ) /\ ( a e. ( 0 ... ( # ` (/) ) ) /\ b e. ( I X. 2o ) ) ) -> ( ( (/) ++ <" b ( M ` b ) "> ) ++ (/) ) = <" b ( M ` b ) "> ) |
87 |
81 86
|
eqtrd |
|- ( ( ( ph /\ (/) e. W ) /\ ( a e. ( 0 ... ( # ` (/) ) ) /\ b e. ( I X. 2o ) ) ) -> ( (/) splice <. a , a , <" b ( M ` b ) "> >. ) = <" b ( M ` b ) "> ) |
88 |
87
|
eqeq2d |
|- ( ( ( ph /\ (/) e. W ) /\ ( a e. ( 0 ... ( # ` (/) ) ) /\ b e. ( I X. 2o ) ) ) -> ( <" <. A , (/) >. <. B , (/) >. "> = ( (/) splice <. a , a , <" b ( M ` b ) "> >. ) <-> <" <. A , (/) >. <. B , (/) >. "> = <" b ( M ` b ) "> ) ) |
89 |
10
|
ad3antrrr |
|- ( ( ( ( ph /\ (/) e. W ) /\ ( a e. ( 0 ... ( # ` (/) ) ) /\ b e. ( I X. 2o ) ) ) /\ <" <. A , (/) >. <. B , (/) >. "> = <" b ( M ` b ) "> ) -> A e. I ) |
90 |
|
1on |
|- 1o e. On |
91 |
90
|
a1i |
|- ( ( ( ( ph /\ (/) e. W ) /\ ( a e. ( 0 ... ( # ` (/) ) ) /\ b e. ( I X. 2o ) ) ) /\ <" <. A , (/) >. <. B , (/) >. "> = <" b ( M ` b ) "> ) -> 1o e. On ) |
92 |
|
simpr |
|- ( ( ( ( ph /\ (/) e. W ) /\ ( a e. ( 0 ... ( # ` (/) ) ) /\ b e. ( I X. 2o ) ) ) /\ <" <. A , (/) >. <. B , (/) >. "> = <" b ( M ` b ) "> ) -> <" <. A , (/) >. <. B , (/) >. "> = <" b ( M ` b ) "> ) |
93 |
92
|
fveq1d |
|- ( ( ( ( ph /\ (/) e. W ) /\ ( a e. ( 0 ... ( # ` (/) ) ) /\ b e. ( I X. 2o ) ) ) /\ <" <. A , (/) >. <. B , (/) >. "> = <" b ( M ` b ) "> ) -> ( <" <. A , (/) >. <. B , (/) >. "> ` 1 ) = ( <" b ( M ` b ) "> ` 1 ) ) |
94 |
|
opex |
|- <. B , (/) >. e. _V |
95 |
|
s2fv1 |
|- ( <. B , (/) >. e. _V -> ( <" <. A , (/) >. <. B , (/) >. "> ` 1 ) = <. B , (/) >. ) |
96 |
94 95
|
ax-mp |
|- ( <" <. A , (/) >. <. B , (/) >. "> ` 1 ) = <. B , (/) >. |
97 |
|
fvex |
|- ( M ` b ) e. _V |
98 |
|
s2fv1 |
|- ( ( M ` b ) e. _V -> ( <" b ( M ` b ) "> ` 1 ) = ( M ` b ) ) |
99 |
97 98
|
ax-mp |
|- ( <" b ( M ` b ) "> ` 1 ) = ( M ` b ) |
100 |
93 96 99
|
3eqtr3g |
|- ( ( ( ( ph /\ (/) e. W ) /\ ( a e. ( 0 ... ( # ` (/) ) ) /\ b e. ( I X. 2o ) ) ) /\ <" <. A , (/) >. <. B , (/) >. "> = <" b ( M ` b ) "> ) -> <. B , (/) >. = ( M ` b ) ) |
101 |
92
|
fveq1d |
|- ( ( ( ( ph /\ (/) e. W ) /\ ( a e. ( 0 ... ( # ` (/) ) ) /\ b e. ( I X. 2o ) ) ) /\ <" <. A , (/) >. <. B , (/) >. "> = <" b ( M ` b ) "> ) -> ( <" <. A , (/) >. <. B , (/) >. "> ` 0 ) = ( <" b ( M ` b ) "> ` 0 ) ) |
102 |
|
opex |
|- <. A , (/) >. e. _V |
103 |
|
s2fv0 |
|- ( <. A , (/) >. e. _V -> ( <" <. A , (/) >. <. B , (/) >. "> ` 0 ) = <. A , (/) >. ) |
104 |
102 103
|
ax-mp |
|- ( <" <. A , (/) >. <. B , (/) >. "> ` 0 ) = <. A , (/) >. |
105 |
|
s2fv0 |
|- ( b e. _V -> ( <" b ( M ` b ) "> ` 0 ) = b ) |
106 |
105
|
elv |
|- ( <" b ( M ` b ) "> ` 0 ) = b |
107 |
101 104 106
|
3eqtr3g |
|- ( ( ( ( ph /\ (/) e. W ) /\ ( a e. ( 0 ... ( # ` (/) ) ) /\ b e. ( I X. 2o ) ) ) /\ <" <. A , (/) >. <. B , (/) >. "> = <" b ( M ` b ) "> ) -> <. A , (/) >. = b ) |
108 |
107
|
fveq2d |
|- ( ( ( ( ph /\ (/) e. W ) /\ ( a e. ( 0 ... ( # ` (/) ) ) /\ b e. ( I X. 2o ) ) ) /\ <" <. A , (/) >. <. B , (/) >. "> = <" b ( M ` b ) "> ) -> ( M ` <. A , (/) >. ) = ( M ` b ) ) |
109 |
5
|
efgmval |
|- ( ( A e. I /\ (/) e. 2o ) -> ( A M (/) ) = <. A , ( 1o \ (/) ) >. ) |
110 |
89 15 109
|
sylancl |
|- ( ( ( ( ph /\ (/) e. W ) /\ ( a e. ( 0 ... ( # ` (/) ) ) /\ b e. ( I X. 2o ) ) ) /\ <" <. A , (/) >. <. B , (/) >. "> = <" b ( M ` b ) "> ) -> ( A M (/) ) = <. A , ( 1o \ (/) ) >. ) |
111 |
|
df-ov |
|- ( A M (/) ) = ( M ` <. A , (/) >. ) |
112 |
|
dif0 |
|- ( 1o \ (/) ) = 1o |
113 |
112
|
opeq2i |
|- <. A , ( 1o \ (/) ) >. = <. A , 1o >. |
114 |
110 111 113
|
3eqtr3g |
|- ( ( ( ( ph /\ (/) e. W ) /\ ( a e. ( 0 ... ( # ` (/) ) ) /\ b e. ( I X. 2o ) ) ) /\ <" <. A , (/) >. <. B , (/) >. "> = <" b ( M ` b ) "> ) -> ( M ` <. A , (/) >. ) = <. A , 1o >. ) |
115 |
100 108 114
|
3eqtr2rd |
|- ( ( ( ( ph /\ (/) e. W ) /\ ( a e. ( 0 ... ( # ` (/) ) ) /\ b e. ( I X. 2o ) ) ) /\ <" <. A , (/) >. <. B , (/) >. "> = <" b ( M ` b ) "> ) -> <. A , 1o >. = <. B , (/) >. ) |
116 |
|
opthg |
|- ( ( A e. I /\ 1o e. On ) -> ( <. A , 1o >. = <. B , (/) >. <-> ( A = B /\ 1o = (/) ) ) ) |
117 |
116
|
simplbda |
|- ( ( ( A e. I /\ 1o e. On ) /\ <. A , 1o >. = <. B , (/) >. ) -> 1o = (/) ) |
118 |
89 91 115 117
|
syl21anc |
|- ( ( ( ( ph /\ (/) e. W ) /\ ( a e. ( 0 ... ( # ` (/) ) ) /\ b e. ( I X. 2o ) ) ) /\ <" <. A , (/) >. <. B , (/) >. "> = <" b ( M ` b ) "> ) -> 1o = (/) ) |
119 |
118
|
ex |
|- ( ( ( ph /\ (/) e. W ) /\ ( a e. ( 0 ... ( # ` (/) ) ) /\ b e. ( I X. 2o ) ) ) -> ( <" <. A , (/) >. <. B , (/) >. "> = <" b ( M ` b ) "> -> 1o = (/) ) ) |
120 |
88 119
|
sylbid |
|- ( ( ( ph /\ (/) e. W ) /\ ( a e. ( 0 ... ( # ` (/) ) ) /\ b e. ( I X. 2o ) ) ) -> ( <" <. A , (/) >. <. B , (/) >. "> = ( (/) splice <. a , a , <" b ( M ` b ) "> >. ) -> 1o = (/) ) ) |
121 |
120
|
rexlimdvva |
|- ( ( ph /\ (/) e. W ) -> ( E. a e. ( 0 ... ( # ` (/) ) ) E. b e. ( I X. 2o ) <" <. A , (/) >. <. B , (/) >. "> = ( (/) splice <. a , a , <" b ( M ` b ) "> >. ) -> 1o = (/) ) ) |
122 |
57 121
|
syl5bi |
|- ( ( ph /\ (/) e. W ) -> ( <" <. A , (/) >. <. B , (/) >. "> e. ran ( a e. ( 0 ... ( # ` (/) ) ) , b e. ( I X. 2o ) |-> ( (/) splice <. a , a , <" b ( M ` b ) "> >. ) ) -> 1o = (/) ) ) |
123 |
54 122
|
sylbid |
|- ( ( ph /\ (/) e. W ) -> ( <" <. A , (/) >. <. B , (/) >. "> e. ran ( T ` (/) ) -> 1o = (/) ) ) |
124 |
123
|
expimpd |
|- ( ph -> ( ( (/) e. W /\ <" <. A , (/) >. <. B , (/) >. "> e. ran ( T ` (/) ) ) -> 1o = (/) ) ) |
125 |
|
hasheq0 |
|- ( x e. _V -> ( ( # ` x ) = 0 <-> x = (/) ) ) |
126 |
125
|
elv |
|- ( ( # ` x ) = 0 <-> x = (/) ) |
127 |
|
eleq1 |
|- ( x = (/) -> ( x e. W <-> (/) e. W ) ) |
128 |
|
fveq2 |
|- ( x = (/) -> ( T ` x ) = ( T ` (/) ) ) |
129 |
128
|
rneqd |
|- ( x = (/) -> ran ( T ` x ) = ran ( T ` (/) ) ) |
130 |
129
|
eleq2d |
|- ( x = (/) -> ( <" <. A , (/) >. <. B , (/) >. "> e. ran ( T ` x ) <-> <" <. A , (/) >. <. B , (/) >. "> e. ran ( T ` (/) ) ) ) |
131 |
127 130
|
anbi12d |
|- ( x = (/) -> ( ( x e. W /\ <" <. A , (/) >. <. B , (/) >. "> e. ran ( T ` x ) ) <-> ( (/) e. W /\ <" <. A , (/) >. <. B , (/) >. "> e. ran ( T ` (/) ) ) ) ) |
132 |
126 131
|
sylbi |
|- ( ( # ` x ) = 0 -> ( ( x e. W /\ <" <. A , (/) >. <. B , (/) >. "> e. ran ( T ` x ) ) <-> ( (/) e. W /\ <" <. A , (/) >. <. B , (/) >. "> e. ran ( T ` (/) ) ) ) ) |
133 |
132
|
eqcoms |
|- ( 0 = ( # ` x ) -> ( ( x e. W /\ <" <. A , (/) >. <. B , (/) >. "> e. ran ( T ` x ) ) <-> ( (/) e. W /\ <" <. A , (/) >. <. B , (/) >. "> e. ran ( T ` (/) ) ) ) ) |
134 |
133
|
imbi1d |
|- ( 0 = ( # ` x ) -> ( ( ( x e. W /\ <" <. A , (/) >. <. B , (/) >. "> e. ran ( T ` x ) ) -> 1o = (/) ) <-> ( ( (/) e. W /\ <" <. A , (/) >. <. B , (/) >. "> e. ran ( T ` (/) ) ) -> 1o = (/) ) ) ) |
135 |
124 134
|
syl5ibrcom |
|- ( ph -> ( 0 = ( # ` x ) -> ( ( x e. W /\ <" <. A , (/) >. <. B , (/) >. "> e. ran ( T ` x ) ) -> 1o = (/) ) ) ) |
136 |
135
|
com23 |
|- ( ph -> ( ( x e. W /\ <" <. A , (/) >. <. B , (/) >. "> e. ran ( T ` x ) ) -> ( 0 = ( # ` x ) -> 1o = (/) ) ) ) |
137 |
136
|
expdimp |
|- ( ( ph /\ x e. W ) -> ( <" <. A , (/) >. <. B , (/) >. "> e. ran ( T ` x ) -> ( 0 = ( # ` x ) -> 1o = (/) ) ) ) |
138 |
49 137
|
mpdd |
|- ( ( ph /\ x e. W ) -> ( <" <. A , (/) >. <. B , (/) >. "> e. ran ( T ` x ) -> 1o = (/) ) ) |
139 |
138
|
necon3ad |
|- ( ( ph /\ x e. W ) -> ( 1o =/= (/) -> -. <" <. A , (/) >. <. B , (/) >. "> e. ran ( T ` x ) ) ) |
140 |
29 139
|
mpi |
|- ( ( ph /\ x e. W ) -> -. <" <. A , (/) >. <. B , (/) >. "> e. ran ( T ` x ) ) |
141 |
140
|
nrexdv |
|- ( ph -> -. E. x e. W <" <. A , (/) >. <. B , (/) >. "> e. ran ( T ` x ) ) |
142 |
|
eliun |
|- ( <" <. A , (/) >. <. B , (/) >. "> e. U_ x e. W ran ( T ` x ) <-> E. x e. W <" <. A , (/) >. <. B , (/) >. "> e. ran ( T ` x ) ) |
143 |
141 142
|
sylnibr |
|- ( ph -> -. <" <. A , (/) >. <. B , (/) >. "> e. U_ x e. W ran ( T ` x ) ) |
144 |
28 143
|
eldifd |
|- ( ph -> <" <. A , (/) >. <. B , (/) >. "> e. ( W \ U_ x e. W ran ( T ` x ) ) ) |
145 |
144 7
|
eleqtrrdi |
|- ( ph -> <" <. A , (/) >. <. B , (/) >. "> e. D ) |
146 |
|
df-s2 |
|- <" <. A , (/) >. <. B , (/) >. "> = ( <" <. A , (/) >. "> ++ <" <. B , (/) >. "> ) |
147 |
2 3
|
efger |
|- .~ Er W |
148 |
147
|
a1i |
|- ( ph -> .~ Er W ) |
149 |
148 28
|
erref |
|- ( ph -> <" <. A , (/) >. <. B , (/) >. "> .~ <" <. A , (/) >. <. B , (/) >. "> ) |
150 |
146 149
|
eqbrtrrid |
|- ( ph -> ( <" <. A , (/) >. "> ++ <" <. B , (/) >. "> ) .~ <" <. A , (/) >. <. B , (/) >. "> ) |
151 |
146
|
ovexi |
|- <" <. A , (/) >. <. B , (/) >. "> e. _V |
152 |
|
ovex |
|- ( <" <. A , (/) >. "> ++ <" <. B , (/) >. "> ) e. _V |
153 |
151 152
|
elec |
|- ( <" <. A , (/) >. <. B , (/) >. "> e. [ ( <" <. A , (/) >. "> ++ <" <. B , (/) >. "> ) ] .~ <-> ( <" <. A , (/) >. "> ++ <" <. B , (/) >. "> ) .~ <" <. A , (/) >. <. B , (/) >. "> ) |
154 |
150 153
|
sylibr |
|- ( ph -> <" <. A , (/) >. <. B , (/) >. "> e. [ ( <" <. A , (/) >. "> ++ <" <. B , (/) >. "> ) ] .~ ) |
155 |
3 8
|
vrgpval |
|- ( ( I e. V /\ A e. I ) -> ( U ` A ) = [ <" <. A , (/) >. "> ] .~ ) |
156 |
9 10 155
|
syl2anc |
|- ( ph -> ( U ` A ) = [ <" <. A , (/) >. "> ] .~ ) |
157 |
3 8
|
vrgpval |
|- ( ( I e. V /\ B e. I ) -> ( U ` B ) = [ <" <. B , (/) >. "> ] .~ ) |
158 |
9 11 157
|
syl2anc |
|- ( ph -> ( U ` B ) = [ <" <. B , (/) >. "> ] .~ ) |
159 |
156 158
|
oveq12d |
|- ( ph -> ( ( U ` A ) .+ ( U ` B ) ) = ( [ <" <. A , (/) >. "> ] .~ .+ [ <" <. B , (/) >. "> ] .~ ) ) |
160 |
17
|
s1cld |
|- ( ph -> <" <. A , (/) >. "> e. Word ( I X. 2o ) ) |
161 |
160 27
|
eleqtrrd |
|- ( ph -> <" <. A , (/) >. "> e. W ) |
162 |
19
|
s1cld |
|- ( ph -> <" <. B , (/) >. "> e. Word ( I X. 2o ) ) |
163 |
162 27
|
eleqtrrd |
|- ( ph -> <" <. B , (/) >. "> e. W ) |
164 |
2 1 3 4
|
frgpadd |
|- ( ( <" <. A , (/) >. "> e. W /\ <" <. B , (/) >. "> e. W ) -> ( [ <" <. A , (/) >. "> ] .~ .+ [ <" <. B , (/) >. "> ] .~ ) = [ ( <" <. A , (/) >. "> ++ <" <. B , (/) >. "> ) ] .~ ) |
165 |
161 163 164
|
syl2anc |
|- ( ph -> ( [ <" <. A , (/) >. "> ] .~ .+ [ <" <. B , (/) >. "> ] .~ ) = [ ( <" <. A , (/) >. "> ++ <" <. B , (/) >. "> ) ] .~ ) |
166 |
159 165
|
eqtrd |
|- ( ph -> ( ( U ` A ) .+ ( U ` B ) ) = [ ( <" <. A , (/) >. "> ++ <" <. B , (/) >. "> ) ] .~ ) |
167 |
154 166
|
eleqtrrd |
|- ( ph -> <" <. A , (/) >. <. B , (/) >. "> e. ( ( U ` A ) .+ ( U ` B ) ) ) |
168 |
145 167
|
elind |
|- ( ph -> <" <. A , (/) >. <. B , (/) >. "> e. ( D i^i ( ( U ` A ) .+ ( U ` B ) ) ) ) |