Step |
Hyp |
Ref |
Expression |
1 |
|
frgpnabl.g |
|- G = ( freeGrp ` I ) |
2 |
|
frgpnabl.w |
|- W = ( _I ` Word ( I X. 2o ) ) |
3 |
|
frgpnabl.r |
|- .~ = ( ~FG ` I ) |
4 |
|
frgpnabl.p |
|- .+ = ( +g ` G ) |
5 |
|
frgpnabl.m |
|- M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) |
6 |
|
frgpnabl.t |
|- T = ( v e. W |-> ( n e. ( 0 ... ( # ` v ) ) , w e. ( I X. 2o ) |-> ( v splice <. n , n , <" w ( M ` w ) "> >. ) ) ) |
7 |
|
frgpnabl.d |
|- D = ( W \ U_ x e. W ran ( T ` x ) ) |
8 |
|
frgpnabl.u |
|- U = ( varFGrp ` I ) |
9 |
|
frgpnabl.i |
|- ( ph -> I e. V ) |
10 |
|
frgpnabl.a |
|- ( ph -> A e. I ) |
11 |
|
frgpnabl.b |
|- ( ph -> B e. I ) |
12 |
|
frgpnabl.n |
|- ( ph -> ( ( U ` A ) .+ ( U ` B ) ) = ( ( U ` B ) .+ ( U ` A ) ) ) |
13 |
|
0ex |
|- (/) e. _V |
14 |
13
|
a1i |
|- ( ph -> (/) e. _V ) |
15 |
|
difss |
|- ( W \ U_ x e. W ran ( T ` x ) ) C_ W |
16 |
7 15
|
eqsstri |
|- D C_ W |
17 |
1 2 3 4 5 6 7 8 9 11 10
|
frgpnabllem1 |
|- ( ph -> <" <. B , (/) >. <. A , (/) >. "> e. ( D i^i ( ( U ` B ) .+ ( U ` A ) ) ) ) |
18 |
17
|
elin1d |
|- ( ph -> <" <. B , (/) >. <. A , (/) >. "> e. D ) |
19 |
16 18
|
sselid |
|- ( ph -> <" <. B , (/) >. <. A , (/) >. "> e. W ) |
20 |
|
eqid |
|- ( m e. { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } |-> ( m ` ( ( # ` m ) - 1 ) ) ) = ( m e. { t e. ( Word W \ { (/) } ) | ( ( t ` 0 ) e. D /\ A. k e. ( 1 ..^ ( # ` t ) ) ( t ` k ) e. ran ( T ` ( t ` ( k - 1 ) ) ) ) } |-> ( m ` ( ( # ` m ) - 1 ) ) ) |
21 |
2 3 5 6 7 20
|
efgredeu |
|- ( <" <. B , (/) >. <. A , (/) >. "> e. W -> E! d e. D d .~ <" <. B , (/) >. <. A , (/) >. "> ) |
22 |
|
reurmo |
|- ( E! d e. D d .~ <" <. B , (/) >. <. A , (/) >. "> -> E* d e. D d .~ <" <. B , (/) >. <. A , (/) >. "> ) |
23 |
19 21 22
|
3syl |
|- ( ph -> E* d e. D d .~ <" <. B , (/) >. <. A , (/) >. "> ) |
24 |
1 2 3 4 5 6 7 8 9 10 11
|
frgpnabllem1 |
|- ( ph -> <" <. A , (/) >. <. B , (/) >. "> e. ( D i^i ( ( U ` A ) .+ ( U ` B ) ) ) ) |
25 |
24
|
elin1d |
|- ( ph -> <" <. A , (/) >. <. B , (/) >. "> e. D ) |
26 |
2 3
|
efger |
|- .~ Er W |
27 |
26
|
a1i |
|- ( ph -> .~ Er W ) |
28 |
1
|
frgpgrp |
|- ( I e. V -> G e. Grp ) |
29 |
9 28
|
syl |
|- ( ph -> G e. Grp ) |
30 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
31 |
3 8 1 30
|
vrgpf |
|- ( I e. V -> U : I --> ( Base ` G ) ) |
32 |
9 31
|
syl |
|- ( ph -> U : I --> ( Base ` G ) ) |
33 |
32 10
|
ffvelrnd |
|- ( ph -> ( U ` A ) e. ( Base ` G ) ) |
34 |
32 11
|
ffvelrnd |
|- ( ph -> ( U ` B ) e. ( Base ` G ) ) |
35 |
30 4
|
grpcl |
|- ( ( G e. Grp /\ ( U ` A ) e. ( Base ` G ) /\ ( U ` B ) e. ( Base ` G ) ) -> ( ( U ` A ) .+ ( U ` B ) ) e. ( Base ` G ) ) |
36 |
29 33 34 35
|
syl3anc |
|- ( ph -> ( ( U ` A ) .+ ( U ` B ) ) e. ( Base ` G ) ) |
37 |
|
eqid |
|- ( freeMnd ` ( I X. 2o ) ) = ( freeMnd ` ( I X. 2o ) ) |
38 |
1 37 3
|
frgpval |
|- ( I e. V -> G = ( ( freeMnd ` ( I X. 2o ) ) /s .~ ) ) |
39 |
9 38
|
syl |
|- ( ph -> G = ( ( freeMnd ` ( I X. 2o ) ) /s .~ ) ) |
40 |
|
2on |
|- 2o e. On |
41 |
|
xpexg |
|- ( ( I e. V /\ 2o e. On ) -> ( I X. 2o ) e. _V ) |
42 |
9 40 41
|
sylancl |
|- ( ph -> ( I X. 2o ) e. _V ) |
43 |
|
wrdexg |
|- ( ( I X. 2o ) e. _V -> Word ( I X. 2o ) e. _V ) |
44 |
|
fvi |
|- ( Word ( I X. 2o ) e. _V -> ( _I ` Word ( I X. 2o ) ) = Word ( I X. 2o ) ) |
45 |
42 43 44
|
3syl |
|- ( ph -> ( _I ` Word ( I X. 2o ) ) = Word ( I X. 2o ) ) |
46 |
2 45
|
eqtrid |
|- ( ph -> W = Word ( I X. 2o ) ) |
47 |
|
eqid |
|- ( Base ` ( freeMnd ` ( I X. 2o ) ) ) = ( Base ` ( freeMnd ` ( I X. 2o ) ) ) |
48 |
37 47
|
frmdbas |
|- ( ( I X. 2o ) e. _V -> ( Base ` ( freeMnd ` ( I X. 2o ) ) ) = Word ( I X. 2o ) ) |
49 |
42 48
|
syl |
|- ( ph -> ( Base ` ( freeMnd ` ( I X. 2o ) ) ) = Word ( I X. 2o ) ) |
50 |
46 49
|
eqtr4d |
|- ( ph -> W = ( Base ` ( freeMnd ` ( I X. 2o ) ) ) ) |
51 |
3
|
fvexi |
|- .~ e. _V |
52 |
51
|
a1i |
|- ( ph -> .~ e. _V ) |
53 |
|
fvexd |
|- ( ph -> ( freeMnd ` ( I X. 2o ) ) e. _V ) |
54 |
39 50 52 53
|
qusbas |
|- ( ph -> ( W /. .~ ) = ( Base ` G ) ) |
55 |
36 54
|
eleqtrrd |
|- ( ph -> ( ( U ` A ) .+ ( U ` B ) ) e. ( W /. .~ ) ) |
56 |
24
|
elin2d |
|- ( ph -> <" <. A , (/) >. <. B , (/) >. "> e. ( ( U ` A ) .+ ( U ` B ) ) ) |
57 |
|
qsel |
|- ( ( .~ Er W /\ ( ( U ` A ) .+ ( U ` B ) ) e. ( W /. .~ ) /\ <" <. A , (/) >. <. B , (/) >. "> e. ( ( U ` A ) .+ ( U ` B ) ) ) -> ( ( U ` A ) .+ ( U ` B ) ) = [ <" <. A , (/) >. <. B , (/) >. "> ] .~ ) |
58 |
27 55 56 57
|
syl3anc |
|- ( ph -> ( ( U ` A ) .+ ( U ` B ) ) = [ <" <. A , (/) >. <. B , (/) >. "> ] .~ ) |
59 |
17
|
elin2d |
|- ( ph -> <" <. B , (/) >. <. A , (/) >. "> e. ( ( U ` B ) .+ ( U ` A ) ) ) |
60 |
59 12
|
eleqtrrd |
|- ( ph -> <" <. B , (/) >. <. A , (/) >. "> e. ( ( U ` A ) .+ ( U ` B ) ) ) |
61 |
|
qsel |
|- ( ( .~ Er W /\ ( ( U ` A ) .+ ( U ` B ) ) e. ( W /. .~ ) /\ <" <. B , (/) >. <. A , (/) >. "> e. ( ( U ` A ) .+ ( U ` B ) ) ) -> ( ( U ` A ) .+ ( U ` B ) ) = [ <" <. B , (/) >. <. A , (/) >. "> ] .~ ) |
62 |
27 55 60 61
|
syl3anc |
|- ( ph -> ( ( U ` A ) .+ ( U ` B ) ) = [ <" <. B , (/) >. <. A , (/) >. "> ] .~ ) |
63 |
58 62
|
eqtr3d |
|- ( ph -> [ <" <. A , (/) >. <. B , (/) >. "> ] .~ = [ <" <. B , (/) >. <. A , (/) >. "> ] .~ ) |
64 |
16 25
|
sselid |
|- ( ph -> <" <. A , (/) >. <. B , (/) >. "> e. W ) |
65 |
27 64
|
erth |
|- ( ph -> ( <" <. A , (/) >. <. B , (/) >. "> .~ <" <. B , (/) >. <. A , (/) >. "> <-> [ <" <. A , (/) >. <. B , (/) >. "> ] .~ = [ <" <. B , (/) >. <. A , (/) >. "> ] .~ ) ) |
66 |
63 65
|
mpbird |
|- ( ph -> <" <. A , (/) >. <. B , (/) >. "> .~ <" <. B , (/) >. <. A , (/) >. "> ) |
67 |
27 19
|
erref |
|- ( ph -> <" <. B , (/) >. <. A , (/) >. "> .~ <" <. B , (/) >. <. A , (/) >. "> ) |
68 |
|
breq1 |
|- ( d = <" <. A , (/) >. <. B , (/) >. "> -> ( d .~ <" <. B , (/) >. <. A , (/) >. "> <-> <" <. A , (/) >. <. B , (/) >. "> .~ <" <. B , (/) >. <. A , (/) >. "> ) ) |
69 |
|
breq1 |
|- ( d = <" <. B , (/) >. <. A , (/) >. "> -> ( d .~ <" <. B , (/) >. <. A , (/) >. "> <-> <" <. B , (/) >. <. A , (/) >. "> .~ <" <. B , (/) >. <. A , (/) >. "> ) ) |
70 |
68 69
|
rmoi |
|- ( ( E* d e. D d .~ <" <. B , (/) >. <. A , (/) >. "> /\ ( <" <. A , (/) >. <. B , (/) >. "> e. D /\ <" <. A , (/) >. <. B , (/) >. "> .~ <" <. B , (/) >. <. A , (/) >. "> ) /\ ( <" <. B , (/) >. <. A , (/) >. "> e. D /\ <" <. B , (/) >. <. A , (/) >. "> .~ <" <. B , (/) >. <. A , (/) >. "> ) ) -> <" <. A , (/) >. <. B , (/) >. "> = <" <. B , (/) >. <. A , (/) >. "> ) |
71 |
23 25 66 18 67 70
|
syl122anc |
|- ( ph -> <" <. A , (/) >. <. B , (/) >. "> = <" <. B , (/) >. <. A , (/) >. "> ) |
72 |
71
|
fveq1d |
|- ( ph -> ( <" <. A , (/) >. <. B , (/) >. "> ` 0 ) = ( <" <. B , (/) >. <. A , (/) >. "> ` 0 ) ) |
73 |
|
opex |
|- <. A , (/) >. e. _V |
74 |
|
s2fv0 |
|- ( <. A , (/) >. e. _V -> ( <" <. A , (/) >. <. B , (/) >. "> ` 0 ) = <. A , (/) >. ) |
75 |
73 74
|
ax-mp |
|- ( <" <. A , (/) >. <. B , (/) >. "> ` 0 ) = <. A , (/) >. |
76 |
|
opex |
|- <. B , (/) >. e. _V |
77 |
|
s2fv0 |
|- ( <. B , (/) >. e. _V -> ( <" <. B , (/) >. <. A , (/) >. "> ` 0 ) = <. B , (/) >. ) |
78 |
76 77
|
ax-mp |
|- ( <" <. B , (/) >. <. A , (/) >. "> ` 0 ) = <. B , (/) >. |
79 |
72 75 78
|
3eqtr3g |
|- ( ph -> <. A , (/) >. = <. B , (/) >. ) |
80 |
|
opthg |
|- ( ( A e. I /\ (/) e. _V ) -> ( <. A , (/) >. = <. B , (/) >. <-> ( A = B /\ (/) = (/) ) ) ) |
81 |
80
|
simprbda |
|- ( ( ( A e. I /\ (/) e. _V ) /\ <. A , (/) >. = <. B , (/) >. ) -> A = B ) |
82 |
10 14 79 81
|
syl21anc |
|- ( ph -> A = B ) |