Step |
Hyp |
Ref |
Expression |
1 |
|
frgpup.b |
|- B = ( Base ` H ) |
2 |
|
frgpup.n |
|- N = ( invg ` H ) |
3 |
|
frgpup.t |
|- T = ( y e. I , z e. 2o |-> if ( z = (/) , ( F ` y ) , ( N ` ( F ` y ) ) ) ) |
4 |
|
frgpup.h |
|- ( ph -> H e. Grp ) |
5 |
|
frgpup.i |
|- ( ph -> I e. V ) |
6 |
|
frgpup.a |
|- ( ph -> F : I --> B ) |
7 |
|
frgpup.w |
|- W = ( _I ` Word ( I X. 2o ) ) |
8 |
|
frgpup.r |
|- .~ = ( ~FG ` I ) |
9 |
|
frgpup.g |
|- G = ( freeGrp ` I ) |
10 |
|
frgpup.x |
|- X = ( Base ` G ) |
11 |
|
frgpup.e |
|- E = ran ( g e. W |-> <. [ g ] .~ , ( H gsum ( T o. g ) ) >. ) |
12 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
13 |
|
eqid |
|- ( +g ` H ) = ( +g ` H ) |
14 |
9
|
frgpgrp |
|- ( I e. V -> G e. Grp ) |
15 |
5 14
|
syl |
|- ( ph -> G e. Grp ) |
16 |
1 2 3 4 5 6 7 8 9 10 11
|
frgpupf |
|- ( ph -> E : X --> B ) |
17 |
|
eqid |
|- ( freeMnd ` ( I X. 2o ) ) = ( freeMnd ` ( I X. 2o ) ) |
18 |
9 17 8
|
frgpval |
|- ( I e. V -> G = ( ( freeMnd ` ( I X. 2o ) ) /s .~ ) ) |
19 |
5 18
|
syl |
|- ( ph -> G = ( ( freeMnd ` ( I X. 2o ) ) /s .~ ) ) |
20 |
|
2on |
|- 2o e. On |
21 |
|
xpexg |
|- ( ( I e. V /\ 2o e. On ) -> ( I X. 2o ) e. _V ) |
22 |
5 20 21
|
sylancl |
|- ( ph -> ( I X. 2o ) e. _V ) |
23 |
|
wrdexg |
|- ( ( I X. 2o ) e. _V -> Word ( I X. 2o ) e. _V ) |
24 |
|
fvi |
|- ( Word ( I X. 2o ) e. _V -> ( _I ` Word ( I X. 2o ) ) = Word ( I X. 2o ) ) |
25 |
22 23 24
|
3syl |
|- ( ph -> ( _I ` Word ( I X. 2o ) ) = Word ( I X. 2o ) ) |
26 |
7 25
|
eqtrid |
|- ( ph -> W = Word ( I X. 2o ) ) |
27 |
|
eqid |
|- ( Base ` ( freeMnd ` ( I X. 2o ) ) ) = ( Base ` ( freeMnd ` ( I X. 2o ) ) ) |
28 |
17 27
|
frmdbas |
|- ( ( I X. 2o ) e. _V -> ( Base ` ( freeMnd ` ( I X. 2o ) ) ) = Word ( I X. 2o ) ) |
29 |
22 28
|
syl |
|- ( ph -> ( Base ` ( freeMnd ` ( I X. 2o ) ) ) = Word ( I X. 2o ) ) |
30 |
26 29
|
eqtr4d |
|- ( ph -> W = ( Base ` ( freeMnd ` ( I X. 2o ) ) ) ) |
31 |
8
|
fvexi |
|- .~ e. _V |
32 |
31
|
a1i |
|- ( ph -> .~ e. _V ) |
33 |
|
fvexd |
|- ( ph -> ( freeMnd ` ( I X. 2o ) ) e. _V ) |
34 |
19 30 32 33
|
qusbas |
|- ( ph -> ( W /. .~ ) = ( Base ` G ) ) |
35 |
10 34
|
eqtr4id |
|- ( ph -> X = ( W /. .~ ) ) |
36 |
|
eqimss |
|- ( X = ( W /. .~ ) -> X C_ ( W /. .~ ) ) |
37 |
35 36
|
syl |
|- ( ph -> X C_ ( W /. .~ ) ) |
38 |
37
|
adantr |
|- ( ( ph /\ a e. X ) -> X C_ ( W /. .~ ) ) |
39 |
38
|
sselda |
|- ( ( ( ph /\ a e. X ) /\ c e. X ) -> c e. ( W /. .~ ) ) |
40 |
|
eqid |
|- ( W /. .~ ) = ( W /. .~ ) |
41 |
|
oveq2 |
|- ( [ u ] .~ = c -> ( a ( +g ` G ) [ u ] .~ ) = ( a ( +g ` G ) c ) ) |
42 |
41
|
fveq2d |
|- ( [ u ] .~ = c -> ( E ` ( a ( +g ` G ) [ u ] .~ ) ) = ( E ` ( a ( +g ` G ) c ) ) ) |
43 |
|
fveq2 |
|- ( [ u ] .~ = c -> ( E ` [ u ] .~ ) = ( E ` c ) ) |
44 |
43
|
oveq2d |
|- ( [ u ] .~ = c -> ( ( E ` a ) ( +g ` H ) ( E ` [ u ] .~ ) ) = ( ( E ` a ) ( +g ` H ) ( E ` c ) ) ) |
45 |
42 44
|
eqeq12d |
|- ( [ u ] .~ = c -> ( ( E ` ( a ( +g ` G ) [ u ] .~ ) ) = ( ( E ` a ) ( +g ` H ) ( E ` [ u ] .~ ) ) <-> ( E ` ( a ( +g ` G ) c ) ) = ( ( E ` a ) ( +g ` H ) ( E ` c ) ) ) ) |
46 |
37
|
sselda |
|- ( ( ph /\ a e. X ) -> a e. ( W /. .~ ) ) |
47 |
46
|
adantlr |
|- ( ( ( ph /\ u e. W ) /\ a e. X ) -> a e. ( W /. .~ ) ) |
48 |
|
fvoveq1 |
|- ( [ t ] .~ = a -> ( E ` ( [ t ] .~ ( +g ` G ) [ u ] .~ ) ) = ( E ` ( a ( +g ` G ) [ u ] .~ ) ) ) |
49 |
|
fveq2 |
|- ( [ t ] .~ = a -> ( E ` [ t ] .~ ) = ( E ` a ) ) |
50 |
49
|
oveq1d |
|- ( [ t ] .~ = a -> ( ( E ` [ t ] .~ ) ( +g ` H ) ( E ` [ u ] .~ ) ) = ( ( E ` a ) ( +g ` H ) ( E ` [ u ] .~ ) ) ) |
51 |
48 50
|
eqeq12d |
|- ( [ t ] .~ = a -> ( ( E ` ( [ t ] .~ ( +g ` G ) [ u ] .~ ) ) = ( ( E ` [ t ] .~ ) ( +g ` H ) ( E ` [ u ] .~ ) ) <-> ( E ` ( a ( +g ` G ) [ u ] .~ ) ) = ( ( E ` a ) ( +g ` H ) ( E ` [ u ] .~ ) ) ) ) |
52 |
|
fviss |
|- ( _I ` Word ( I X. 2o ) ) C_ Word ( I X. 2o ) |
53 |
7 52
|
eqsstri |
|- W C_ Word ( I X. 2o ) |
54 |
53
|
sseli |
|- ( t e. W -> t e. Word ( I X. 2o ) ) |
55 |
53
|
sseli |
|- ( u e. W -> u e. Word ( I X. 2o ) ) |
56 |
|
ccatcl |
|- ( ( t e. Word ( I X. 2o ) /\ u e. Word ( I X. 2o ) ) -> ( t ++ u ) e. Word ( I X. 2o ) ) |
57 |
54 55 56
|
syl2an |
|- ( ( t e. W /\ u e. W ) -> ( t ++ u ) e. Word ( I X. 2o ) ) |
58 |
7
|
efgrcl |
|- ( t e. W -> ( I e. _V /\ W = Word ( I X. 2o ) ) ) |
59 |
58
|
adantr |
|- ( ( t e. W /\ u e. W ) -> ( I e. _V /\ W = Word ( I X. 2o ) ) ) |
60 |
59
|
simprd |
|- ( ( t e. W /\ u e. W ) -> W = Word ( I X. 2o ) ) |
61 |
57 60
|
eleqtrrd |
|- ( ( t e. W /\ u e. W ) -> ( t ++ u ) e. W ) |
62 |
1 2 3 4 5 6 7 8 9 10 11
|
frgpupval |
|- ( ( ph /\ ( t ++ u ) e. W ) -> ( E ` [ ( t ++ u ) ] .~ ) = ( H gsum ( T o. ( t ++ u ) ) ) ) |
63 |
61 62
|
sylan2 |
|- ( ( ph /\ ( t e. W /\ u e. W ) ) -> ( E ` [ ( t ++ u ) ] .~ ) = ( H gsum ( T o. ( t ++ u ) ) ) ) |
64 |
54
|
ad2antrl |
|- ( ( ph /\ ( t e. W /\ u e. W ) ) -> t e. Word ( I X. 2o ) ) |
65 |
55
|
ad2antll |
|- ( ( ph /\ ( t e. W /\ u e. W ) ) -> u e. Word ( I X. 2o ) ) |
66 |
1 2 3 4 5 6
|
frgpuptf |
|- ( ph -> T : ( I X. 2o ) --> B ) |
67 |
66
|
adantr |
|- ( ( ph /\ ( t e. W /\ u e. W ) ) -> T : ( I X. 2o ) --> B ) |
68 |
|
ccatco |
|- ( ( t e. Word ( I X. 2o ) /\ u e. Word ( I X. 2o ) /\ T : ( I X. 2o ) --> B ) -> ( T o. ( t ++ u ) ) = ( ( T o. t ) ++ ( T o. u ) ) ) |
69 |
64 65 67 68
|
syl3anc |
|- ( ( ph /\ ( t e. W /\ u e. W ) ) -> ( T o. ( t ++ u ) ) = ( ( T o. t ) ++ ( T o. u ) ) ) |
70 |
69
|
oveq2d |
|- ( ( ph /\ ( t e. W /\ u e. W ) ) -> ( H gsum ( T o. ( t ++ u ) ) ) = ( H gsum ( ( T o. t ) ++ ( T o. u ) ) ) ) |
71 |
4
|
grpmndd |
|- ( ph -> H e. Mnd ) |
72 |
71
|
adantr |
|- ( ( ph /\ ( t e. W /\ u e. W ) ) -> H e. Mnd ) |
73 |
|
wrdco |
|- ( ( t e. Word ( I X. 2o ) /\ T : ( I X. 2o ) --> B ) -> ( T o. t ) e. Word B ) |
74 |
54 66 73
|
syl2anr |
|- ( ( ph /\ t e. W ) -> ( T o. t ) e. Word B ) |
75 |
74
|
adantrr |
|- ( ( ph /\ ( t e. W /\ u e. W ) ) -> ( T o. t ) e. Word B ) |
76 |
|
wrdco |
|- ( ( u e. Word ( I X. 2o ) /\ T : ( I X. 2o ) --> B ) -> ( T o. u ) e. Word B ) |
77 |
65 67 76
|
syl2anc |
|- ( ( ph /\ ( t e. W /\ u e. W ) ) -> ( T o. u ) e. Word B ) |
78 |
1 13
|
gsumccat |
|- ( ( H e. Mnd /\ ( T o. t ) e. Word B /\ ( T o. u ) e. Word B ) -> ( H gsum ( ( T o. t ) ++ ( T o. u ) ) ) = ( ( H gsum ( T o. t ) ) ( +g ` H ) ( H gsum ( T o. u ) ) ) ) |
79 |
72 75 77 78
|
syl3anc |
|- ( ( ph /\ ( t e. W /\ u e. W ) ) -> ( H gsum ( ( T o. t ) ++ ( T o. u ) ) ) = ( ( H gsum ( T o. t ) ) ( +g ` H ) ( H gsum ( T o. u ) ) ) ) |
80 |
63 70 79
|
3eqtrd |
|- ( ( ph /\ ( t e. W /\ u e. W ) ) -> ( E ` [ ( t ++ u ) ] .~ ) = ( ( H gsum ( T o. t ) ) ( +g ` H ) ( H gsum ( T o. u ) ) ) ) |
81 |
7 9 8 12
|
frgpadd |
|- ( ( t e. W /\ u e. W ) -> ( [ t ] .~ ( +g ` G ) [ u ] .~ ) = [ ( t ++ u ) ] .~ ) |
82 |
81
|
adantl |
|- ( ( ph /\ ( t e. W /\ u e. W ) ) -> ( [ t ] .~ ( +g ` G ) [ u ] .~ ) = [ ( t ++ u ) ] .~ ) |
83 |
82
|
fveq2d |
|- ( ( ph /\ ( t e. W /\ u e. W ) ) -> ( E ` ( [ t ] .~ ( +g ` G ) [ u ] .~ ) ) = ( E ` [ ( t ++ u ) ] .~ ) ) |
84 |
1 2 3 4 5 6 7 8 9 10 11
|
frgpupval |
|- ( ( ph /\ t e. W ) -> ( E ` [ t ] .~ ) = ( H gsum ( T o. t ) ) ) |
85 |
84
|
adantrr |
|- ( ( ph /\ ( t e. W /\ u e. W ) ) -> ( E ` [ t ] .~ ) = ( H gsum ( T o. t ) ) ) |
86 |
1 2 3 4 5 6 7 8 9 10 11
|
frgpupval |
|- ( ( ph /\ u e. W ) -> ( E ` [ u ] .~ ) = ( H gsum ( T o. u ) ) ) |
87 |
86
|
adantrl |
|- ( ( ph /\ ( t e. W /\ u e. W ) ) -> ( E ` [ u ] .~ ) = ( H gsum ( T o. u ) ) ) |
88 |
85 87
|
oveq12d |
|- ( ( ph /\ ( t e. W /\ u e. W ) ) -> ( ( E ` [ t ] .~ ) ( +g ` H ) ( E ` [ u ] .~ ) ) = ( ( H gsum ( T o. t ) ) ( +g ` H ) ( H gsum ( T o. u ) ) ) ) |
89 |
80 83 88
|
3eqtr4d |
|- ( ( ph /\ ( t e. W /\ u e. W ) ) -> ( E ` ( [ t ] .~ ( +g ` G ) [ u ] .~ ) ) = ( ( E ` [ t ] .~ ) ( +g ` H ) ( E ` [ u ] .~ ) ) ) |
90 |
89
|
anass1rs |
|- ( ( ( ph /\ u e. W ) /\ t e. W ) -> ( E ` ( [ t ] .~ ( +g ` G ) [ u ] .~ ) ) = ( ( E ` [ t ] .~ ) ( +g ` H ) ( E ` [ u ] .~ ) ) ) |
91 |
40 51 90
|
ectocld |
|- ( ( ( ph /\ u e. W ) /\ a e. ( W /. .~ ) ) -> ( E ` ( a ( +g ` G ) [ u ] .~ ) ) = ( ( E ` a ) ( +g ` H ) ( E ` [ u ] .~ ) ) ) |
92 |
47 91
|
syldan |
|- ( ( ( ph /\ u e. W ) /\ a e. X ) -> ( E ` ( a ( +g ` G ) [ u ] .~ ) ) = ( ( E ` a ) ( +g ` H ) ( E ` [ u ] .~ ) ) ) |
93 |
92
|
an32s |
|- ( ( ( ph /\ a e. X ) /\ u e. W ) -> ( E ` ( a ( +g ` G ) [ u ] .~ ) ) = ( ( E ` a ) ( +g ` H ) ( E ` [ u ] .~ ) ) ) |
94 |
40 45 93
|
ectocld |
|- ( ( ( ph /\ a e. X ) /\ c e. ( W /. .~ ) ) -> ( E ` ( a ( +g ` G ) c ) ) = ( ( E ` a ) ( +g ` H ) ( E ` c ) ) ) |
95 |
39 94
|
syldan |
|- ( ( ( ph /\ a e. X ) /\ c e. X ) -> ( E ` ( a ( +g ` G ) c ) ) = ( ( E ` a ) ( +g ` H ) ( E ` c ) ) ) |
96 |
95
|
anasss |
|- ( ( ph /\ ( a e. X /\ c e. X ) ) -> ( E ` ( a ( +g ` G ) c ) ) = ( ( E ` a ) ( +g ` H ) ( E ` c ) ) ) |
97 |
10 1 12 13 15 4 16 96
|
isghmd |
|- ( ph -> E e. ( G GrpHom H ) ) |