Step |
Hyp |
Ref |
Expression |
1 |
|
frgpup.b |
|- B = ( Base ` H ) |
2 |
|
frgpup.n |
|- N = ( invg ` H ) |
3 |
|
frgpup.t |
|- T = ( y e. I , z e. 2o |-> if ( z = (/) , ( F ` y ) , ( N ` ( F ` y ) ) ) ) |
4 |
|
frgpup.h |
|- ( ph -> H e. Grp ) |
5 |
|
frgpup.i |
|- ( ph -> I e. V ) |
6 |
|
frgpup.a |
|- ( ph -> F : I --> B ) |
7 |
|
frgpup.w |
|- W = ( _I ` Word ( I X. 2o ) ) |
8 |
|
frgpup.r |
|- .~ = ( ~FG ` I ) |
9 |
|
frgpup.g |
|- G = ( freeGrp ` I ) |
10 |
|
frgpup.x |
|- X = ( Base ` G ) |
11 |
|
frgpup.e |
|- E = ran ( g e. W |-> <. [ g ] .~ , ( H gsum ( T o. g ) ) >. ) |
12 |
4
|
grpmndd |
|- ( ph -> H e. Mnd ) |
13 |
|
fviss |
|- ( _I ` Word ( I X. 2o ) ) C_ Word ( I X. 2o ) |
14 |
7 13
|
eqsstri |
|- W C_ Word ( I X. 2o ) |
15 |
14
|
sseli |
|- ( g e. W -> g e. Word ( I X. 2o ) ) |
16 |
1 2 3 4 5 6
|
frgpuptf |
|- ( ph -> T : ( I X. 2o ) --> B ) |
17 |
|
wrdco |
|- ( ( g e. Word ( I X. 2o ) /\ T : ( I X. 2o ) --> B ) -> ( T o. g ) e. Word B ) |
18 |
15 16 17
|
syl2anr |
|- ( ( ph /\ g e. W ) -> ( T o. g ) e. Word B ) |
19 |
1
|
gsumwcl |
|- ( ( H e. Mnd /\ ( T o. g ) e. Word B ) -> ( H gsum ( T o. g ) ) e. B ) |
20 |
12 18 19
|
syl2an2r |
|- ( ( ph /\ g e. W ) -> ( H gsum ( T o. g ) ) e. B ) |
21 |
7 8
|
efger |
|- .~ Er W |
22 |
21
|
a1i |
|- ( ph -> .~ Er W ) |
23 |
7
|
fvexi |
|- W e. _V |
24 |
23
|
a1i |
|- ( ph -> W e. _V ) |
25 |
|
coeq2 |
|- ( g = h -> ( T o. g ) = ( T o. h ) ) |
26 |
25
|
oveq2d |
|- ( g = h -> ( H gsum ( T o. g ) ) = ( H gsum ( T o. h ) ) ) |
27 |
1 2 3 4 5 6 7 8
|
frgpuplem |
|- ( ( ph /\ g .~ h ) -> ( H gsum ( T o. g ) ) = ( H gsum ( T o. h ) ) ) |
28 |
11 20 22 24 26 27
|
qliftfund |
|- ( ph -> Fun E ) |
29 |
11 20 22 24
|
qliftf |
|- ( ph -> ( Fun E <-> E : ( W /. .~ ) --> B ) ) |
30 |
28 29
|
mpbid |
|- ( ph -> E : ( W /. .~ ) --> B ) |
31 |
|
eqid |
|- ( freeMnd ` ( I X. 2o ) ) = ( freeMnd ` ( I X. 2o ) ) |
32 |
9 31 8
|
frgpval |
|- ( I e. V -> G = ( ( freeMnd ` ( I X. 2o ) ) /s .~ ) ) |
33 |
5 32
|
syl |
|- ( ph -> G = ( ( freeMnd ` ( I X. 2o ) ) /s .~ ) ) |
34 |
|
2on |
|- 2o e. On |
35 |
|
xpexg |
|- ( ( I e. V /\ 2o e. On ) -> ( I X. 2o ) e. _V ) |
36 |
5 34 35
|
sylancl |
|- ( ph -> ( I X. 2o ) e. _V ) |
37 |
|
wrdexg |
|- ( ( I X. 2o ) e. _V -> Word ( I X. 2o ) e. _V ) |
38 |
|
fvi |
|- ( Word ( I X. 2o ) e. _V -> ( _I ` Word ( I X. 2o ) ) = Word ( I X. 2o ) ) |
39 |
36 37 38
|
3syl |
|- ( ph -> ( _I ` Word ( I X. 2o ) ) = Word ( I X. 2o ) ) |
40 |
7 39
|
eqtrid |
|- ( ph -> W = Word ( I X. 2o ) ) |
41 |
|
eqid |
|- ( Base ` ( freeMnd ` ( I X. 2o ) ) ) = ( Base ` ( freeMnd ` ( I X. 2o ) ) ) |
42 |
31 41
|
frmdbas |
|- ( ( I X. 2o ) e. _V -> ( Base ` ( freeMnd ` ( I X. 2o ) ) ) = Word ( I X. 2o ) ) |
43 |
36 42
|
syl |
|- ( ph -> ( Base ` ( freeMnd ` ( I X. 2o ) ) ) = Word ( I X. 2o ) ) |
44 |
40 43
|
eqtr4d |
|- ( ph -> W = ( Base ` ( freeMnd ` ( I X. 2o ) ) ) ) |
45 |
8
|
fvexi |
|- .~ e. _V |
46 |
45
|
a1i |
|- ( ph -> .~ e. _V ) |
47 |
|
fvexd |
|- ( ph -> ( freeMnd ` ( I X. 2o ) ) e. _V ) |
48 |
33 44 46 47
|
qusbas |
|- ( ph -> ( W /. .~ ) = ( Base ` G ) ) |
49 |
10 48
|
eqtr4id |
|- ( ph -> X = ( W /. .~ ) ) |
50 |
49
|
feq2d |
|- ( ph -> ( E : X --> B <-> E : ( W /. .~ ) --> B ) ) |
51 |
30 50
|
mpbird |
|- ( ph -> E : X --> B ) |