| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frgpup.b |
|- B = ( Base ` H ) |
| 2 |
|
frgpup.n |
|- N = ( invg ` H ) |
| 3 |
|
frgpup.t |
|- T = ( y e. I , z e. 2o |-> if ( z = (/) , ( F ` y ) , ( N ` ( F ` y ) ) ) ) |
| 4 |
|
frgpup.h |
|- ( ph -> H e. Grp ) |
| 5 |
|
frgpup.i |
|- ( ph -> I e. V ) |
| 6 |
|
frgpup.a |
|- ( ph -> F : I --> B ) |
| 7 |
|
frgpuptinv.m |
|- M = ( y e. I , z e. 2o |-> <. y , ( 1o \ z ) >. ) |
| 8 |
|
elxp2 |
|- ( A e. ( I X. 2o ) <-> E. a e. I E. b e. 2o A = <. a , b >. ) |
| 9 |
7
|
efgmval |
|- ( ( a e. I /\ b e. 2o ) -> ( a M b ) = <. a , ( 1o \ b ) >. ) |
| 10 |
9
|
adantl |
|- ( ( ph /\ ( a e. I /\ b e. 2o ) ) -> ( a M b ) = <. a , ( 1o \ b ) >. ) |
| 11 |
10
|
fveq2d |
|- ( ( ph /\ ( a e. I /\ b e. 2o ) ) -> ( T ` ( a M b ) ) = ( T ` <. a , ( 1o \ b ) >. ) ) |
| 12 |
|
df-ov |
|- ( a T ( 1o \ b ) ) = ( T ` <. a , ( 1o \ b ) >. ) |
| 13 |
11 12
|
eqtr4di |
|- ( ( ph /\ ( a e. I /\ b e. 2o ) ) -> ( T ` ( a M b ) ) = ( a T ( 1o \ b ) ) ) |
| 14 |
|
elpri |
|- ( b e. { (/) , 1o } -> ( b = (/) \/ b = 1o ) ) |
| 15 |
|
df2o3 |
|- 2o = { (/) , 1o } |
| 16 |
14 15
|
eleq2s |
|- ( b e. 2o -> ( b = (/) \/ b = 1o ) ) |
| 17 |
|
simpr |
|- ( ( ph /\ a e. I ) -> a e. I ) |
| 18 |
|
1oex |
|- 1o e. _V |
| 19 |
18
|
prid2 |
|- 1o e. { (/) , 1o } |
| 20 |
19 15
|
eleqtrri |
|- 1o e. 2o |
| 21 |
|
1n0 |
|- 1o =/= (/) |
| 22 |
|
neeq1 |
|- ( z = 1o -> ( z =/= (/) <-> 1o =/= (/) ) ) |
| 23 |
21 22
|
mpbiri |
|- ( z = 1o -> z =/= (/) ) |
| 24 |
|
ifnefalse |
|- ( z =/= (/) -> if ( z = (/) , ( F ` y ) , ( N ` ( F ` y ) ) ) = ( N ` ( F ` y ) ) ) |
| 25 |
23 24
|
syl |
|- ( z = 1o -> if ( z = (/) , ( F ` y ) , ( N ` ( F ` y ) ) ) = ( N ` ( F ` y ) ) ) |
| 26 |
|
fveq2 |
|- ( y = a -> ( F ` y ) = ( F ` a ) ) |
| 27 |
26
|
fveq2d |
|- ( y = a -> ( N ` ( F ` y ) ) = ( N ` ( F ` a ) ) ) |
| 28 |
25 27
|
sylan9eqr |
|- ( ( y = a /\ z = 1o ) -> if ( z = (/) , ( F ` y ) , ( N ` ( F ` y ) ) ) = ( N ` ( F ` a ) ) ) |
| 29 |
|
fvex |
|- ( N ` ( F ` a ) ) e. _V |
| 30 |
28 3 29
|
ovmpoa |
|- ( ( a e. I /\ 1o e. 2o ) -> ( a T 1o ) = ( N ` ( F ` a ) ) ) |
| 31 |
17 20 30
|
sylancl |
|- ( ( ph /\ a e. I ) -> ( a T 1o ) = ( N ` ( F ` a ) ) ) |
| 32 |
|
0ex |
|- (/) e. _V |
| 33 |
32
|
prid1 |
|- (/) e. { (/) , 1o } |
| 34 |
33 15
|
eleqtrri |
|- (/) e. 2o |
| 35 |
|
iftrue |
|- ( z = (/) -> if ( z = (/) , ( F ` y ) , ( N ` ( F ` y ) ) ) = ( F ` y ) ) |
| 36 |
35 26
|
sylan9eqr |
|- ( ( y = a /\ z = (/) ) -> if ( z = (/) , ( F ` y ) , ( N ` ( F ` y ) ) ) = ( F ` a ) ) |
| 37 |
|
fvex |
|- ( F ` a ) e. _V |
| 38 |
36 3 37
|
ovmpoa |
|- ( ( a e. I /\ (/) e. 2o ) -> ( a T (/) ) = ( F ` a ) ) |
| 39 |
17 34 38
|
sylancl |
|- ( ( ph /\ a e. I ) -> ( a T (/) ) = ( F ` a ) ) |
| 40 |
39
|
fveq2d |
|- ( ( ph /\ a e. I ) -> ( N ` ( a T (/) ) ) = ( N ` ( F ` a ) ) ) |
| 41 |
31 40
|
eqtr4d |
|- ( ( ph /\ a e. I ) -> ( a T 1o ) = ( N ` ( a T (/) ) ) ) |
| 42 |
|
difeq2 |
|- ( b = (/) -> ( 1o \ b ) = ( 1o \ (/) ) ) |
| 43 |
|
dif0 |
|- ( 1o \ (/) ) = 1o |
| 44 |
42 43
|
eqtrdi |
|- ( b = (/) -> ( 1o \ b ) = 1o ) |
| 45 |
44
|
oveq2d |
|- ( b = (/) -> ( a T ( 1o \ b ) ) = ( a T 1o ) ) |
| 46 |
|
oveq2 |
|- ( b = (/) -> ( a T b ) = ( a T (/) ) ) |
| 47 |
46
|
fveq2d |
|- ( b = (/) -> ( N ` ( a T b ) ) = ( N ` ( a T (/) ) ) ) |
| 48 |
45 47
|
eqeq12d |
|- ( b = (/) -> ( ( a T ( 1o \ b ) ) = ( N ` ( a T b ) ) <-> ( a T 1o ) = ( N ` ( a T (/) ) ) ) ) |
| 49 |
41 48
|
syl5ibrcom |
|- ( ( ph /\ a e. I ) -> ( b = (/) -> ( a T ( 1o \ b ) ) = ( N ` ( a T b ) ) ) ) |
| 50 |
41
|
fveq2d |
|- ( ( ph /\ a e. I ) -> ( N ` ( a T 1o ) ) = ( N ` ( N ` ( a T (/) ) ) ) ) |
| 51 |
6
|
ffvelcdmda |
|- ( ( ph /\ a e. I ) -> ( F ` a ) e. B ) |
| 52 |
39 51
|
eqeltrd |
|- ( ( ph /\ a e. I ) -> ( a T (/) ) e. B ) |
| 53 |
1 2
|
grpinvinv |
|- ( ( H e. Grp /\ ( a T (/) ) e. B ) -> ( N ` ( N ` ( a T (/) ) ) ) = ( a T (/) ) ) |
| 54 |
4 52 53
|
syl2an2r |
|- ( ( ph /\ a e. I ) -> ( N ` ( N ` ( a T (/) ) ) ) = ( a T (/) ) ) |
| 55 |
50 54
|
eqtr2d |
|- ( ( ph /\ a e. I ) -> ( a T (/) ) = ( N ` ( a T 1o ) ) ) |
| 56 |
|
difeq2 |
|- ( b = 1o -> ( 1o \ b ) = ( 1o \ 1o ) ) |
| 57 |
|
difid |
|- ( 1o \ 1o ) = (/) |
| 58 |
56 57
|
eqtrdi |
|- ( b = 1o -> ( 1o \ b ) = (/) ) |
| 59 |
58
|
oveq2d |
|- ( b = 1o -> ( a T ( 1o \ b ) ) = ( a T (/) ) ) |
| 60 |
|
oveq2 |
|- ( b = 1o -> ( a T b ) = ( a T 1o ) ) |
| 61 |
60
|
fveq2d |
|- ( b = 1o -> ( N ` ( a T b ) ) = ( N ` ( a T 1o ) ) ) |
| 62 |
59 61
|
eqeq12d |
|- ( b = 1o -> ( ( a T ( 1o \ b ) ) = ( N ` ( a T b ) ) <-> ( a T (/) ) = ( N ` ( a T 1o ) ) ) ) |
| 63 |
55 62
|
syl5ibrcom |
|- ( ( ph /\ a e. I ) -> ( b = 1o -> ( a T ( 1o \ b ) ) = ( N ` ( a T b ) ) ) ) |
| 64 |
49 63
|
jaod |
|- ( ( ph /\ a e. I ) -> ( ( b = (/) \/ b = 1o ) -> ( a T ( 1o \ b ) ) = ( N ` ( a T b ) ) ) ) |
| 65 |
16 64
|
syl5 |
|- ( ( ph /\ a e. I ) -> ( b e. 2o -> ( a T ( 1o \ b ) ) = ( N ` ( a T b ) ) ) ) |
| 66 |
65
|
impr |
|- ( ( ph /\ ( a e. I /\ b e. 2o ) ) -> ( a T ( 1o \ b ) ) = ( N ` ( a T b ) ) ) |
| 67 |
13 66
|
eqtrd |
|- ( ( ph /\ ( a e. I /\ b e. 2o ) ) -> ( T ` ( a M b ) ) = ( N ` ( a T b ) ) ) |
| 68 |
|
fveq2 |
|- ( A = <. a , b >. -> ( M ` A ) = ( M ` <. a , b >. ) ) |
| 69 |
|
df-ov |
|- ( a M b ) = ( M ` <. a , b >. ) |
| 70 |
68 69
|
eqtr4di |
|- ( A = <. a , b >. -> ( M ` A ) = ( a M b ) ) |
| 71 |
70
|
fveq2d |
|- ( A = <. a , b >. -> ( T ` ( M ` A ) ) = ( T ` ( a M b ) ) ) |
| 72 |
|
fveq2 |
|- ( A = <. a , b >. -> ( T ` A ) = ( T ` <. a , b >. ) ) |
| 73 |
|
df-ov |
|- ( a T b ) = ( T ` <. a , b >. ) |
| 74 |
72 73
|
eqtr4di |
|- ( A = <. a , b >. -> ( T ` A ) = ( a T b ) ) |
| 75 |
74
|
fveq2d |
|- ( A = <. a , b >. -> ( N ` ( T ` A ) ) = ( N ` ( a T b ) ) ) |
| 76 |
71 75
|
eqeq12d |
|- ( A = <. a , b >. -> ( ( T ` ( M ` A ) ) = ( N ` ( T ` A ) ) <-> ( T ` ( a M b ) ) = ( N ` ( a T b ) ) ) ) |
| 77 |
67 76
|
syl5ibrcom |
|- ( ( ph /\ ( a e. I /\ b e. 2o ) ) -> ( A = <. a , b >. -> ( T ` ( M ` A ) ) = ( N ` ( T ` A ) ) ) ) |
| 78 |
77
|
rexlimdvva |
|- ( ph -> ( E. a e. I E. b e. 2o A = <. a , b >. -> ( T ` ( M ` A ) ) = ( N ` ( T ` A ) ) ) ) |
| 79 |
8 78
|
biimtrid |
|- ( ph -> ( A e. ( I X. 2o ) -> ( T ` ( M ` A ) ) = ( N ` ( T ` A ) ) ) ) |
| 80 |
79
|
imp |
|- ( ( ph /\ A e. ( I X. 2o ) ) -> ( T ` ( M ` A ) ) = ( N ` ( T ` A ) ) ) |