Metamath Proof Explorer


Theorem frgr0vb

Description: Any null graph (without vertices and edges) is a friendship graph. (Contributed by Alexander van der Vekens, 30-Sep-2017) (Revised by AV, 29-Mar-2021)

Ref Expression
Assertion frgr0vb
|- ( ( G e. W /\ ( Vtx ` G ) = (/) /\ ( iEdg ` G ) = (/) ) -> G e. FriendGraph )

Proof

Step Hyp Ref Expression
1 frgr0v
 |-  ( ( G e. W /\ ( Vtx ` G ) = (/) ) -> ( G e. FriendGraph <-> ( iEdg ` G ) = (/) ) )
2 1 biimp3ar
 |-  ( ( G e. W /\ ( Vtx ` G ) = (/) /\ ( iEdg ` G ) = (/) ) -> G e. FriendGraph )