Step |
Hyp |
Ref |
Expression |
1 |
|
frgr2wwlkeu.v |
|- V = ( Vtx ` G ) |
2 |
|
frgrusgr |
|- ( G e. FriendGraph -> G e. USGraph ) |
3 |
|
wpthswwlks2on |
|- ( ( G e. USGraph /\ A =/= B ) -> ( A ( 2 WSPathsNOn G ) B ) = ( A ( 2 WWalksNOn G ) B ) ) |
4 |
2 3
|
sylan |
|- ( ( G e. FriendGraph /\ A =/= B ) -> ( A ( 2 WSPathsNOn G ) B ) = ( A ( 2 WWalksNOn G ) B ) ) |
5 |
4
|
3adant2 |
|- ( ( G e. FriendGraph /\ ( A e. V /\ B e. V ) /\ A =/= B ) -> ( A ( 2 WSPathsNOn G ) B ) = ( A ( 2 WWalksNOn G ) B ) ) |
6 |
5
|
fveq2d |
|- ( ( G e. FriendGraph /\ ( A e. V /\ B e. V ) /\ A =/= B ) -> ( # ` ( A ( 2 WSPathsNOn G ) B ) ) = ( # ` ( A ( 2 WWalksNOn G ) B ) ) ) |
7 |
1
|
frgr2wwlk1 |
|- ( ( G e. FriendGraph /\ ( A e. V /\ B e. V ) /\ A =/= B ) -> ( # ` ( A ( 2 WWalksNOn G ) B ) ) = 1 ) |
8 |
6 7
|
eqtrd |
|- ( ( G e. FriendGraph /\ ( A e. V /\ B e. V ) /\ A =/= B ) -> ( # ` ( A ( 2 WSPathsNOn G ) B ) ) = 1 ) |