Step |
Hyp |
Ref |
Expression |
1 |
|
frgr2wwlkeu.v |
|- V = ( Vtx ` G ) |
2 |
1
|
frgr2wwlkn0 |
|- ( ( G e. FriendGraph /\ ( A e. V /\ B e. V ) /\ A =/= B ) -> ( A ( 2 WWalksNOn G ) B ) =/= (/) ) |
3 |
1
|
elwwlks2ons3 |
|- ( w e. ( A ( 2 WWalksNOn G ) B ) <-> E. d e. V ( w = <" A d B "> /\ <" A d B "> e. ( A ( 2 WWalksNOn G ) B ) ) ) |
4 |
1
|
elwwlks2ons3 |
|- ( t e. ( A ( 2 WWalksNOn G ) B ) <-> E. c e. V ( t = <" A c B "> /\ <" A c B "> e. ( A ( 2 WWalksNOn G ) B ) ) ) |
5 |
3 4
|
anbi12i |
|- ( ( w e. ( A ( 2 WWalksNOn G ) B ) /\ t e. ( A ( 2 WWalksNOn G ) B ) ) <-> ( E. d e. V ( w = <" A d B "> /\ <" A d B "> e. ( A ( 2 WWalksNOn G ) B ) ) /\ E. c e. V ( t = <" A c B "> /\ <" A c B "> e. ( A ( 2 WWalksNOn G ) B ) ) ) ) |
6 |
1
|
frgr2wwlkeu |
|- ( ( G e. FriendGraph /\ ( A e. V /\ B e. V ) /\ A =/= B ) -> E! x e. V <" A x B "> e. ( A ( 2 WWalksNOn G ) B ) ) |
7 |
|
s3eq2 |
|- ( x = y -> <" A x B "> = <" A y B "> ) |
8 |
7
|
eleq1d |
|- ( x = y -> ( <" A x B "> e. ( A ( 2 WWalksNOn G ) B ) <-> <" A y B "> e. ( A ( 2 WWalksNOn G ) B ) ) ) |
9 |
8
|
reu4 |
|- ( E! x e. V <" A x B "> e. ( A ( 2 WWalksNOn G ) B ) <-> ( E. x e. V <" A x B "> e. ( A ( 2 WWalksNOn G ) B ) /\ A. x e. V A. y e. V ( ( <" A x B "> e. ( A ( 2 WWalksNOn G ) B ) /\ <" A y B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> x = y ) ) ) |
10 |
|
s3eq2 |
|- ( x = d -> <" A x B "> = <" A d B "> ) |
11 |
10
|
eleq1d |
|- ( x = d -> ( <" A x B "> e. ( A ( 2 WWalksNOn G ) B ) <-> <" A d B "> e. ( A ( 2 WWalksNOn G ) B ) ) ) |
12 |
11
|
anbi1d |
|- ( x = d -> ( ( <" A x B "> e. ( A ( 2 WWalksNOn G ) B ) /\ <" A y B "> e. ( A ( 2 WWalksNOn G ) B ) ) <-> ( <" A d B "> e. ( A ( 2 WWalksNOn G ) B ) /\ <" A y B "> e. ( A ( 2 WWalksNOn G ) B ) ) ) ) |
13 |
|
equequ1 |
|- ( x = d -> ( x = y <-> d = y ) ) |
14 |
12 13
|
imbi12d |
|- ( x = d -> ( ( ( <" A x B "> e. ( A ( 2 WWalksNOn G ) B ) /\ <" A y B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> x = y ) <-> ( ( <" A d B "> e. ( A ( 2 WWalksNOn G ) B ) /\ <" A y B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> d = y ) ) ) |
15 |
|
s3eq2 |
|- ( y = c -> <" A y B "> = <" A c B "> ) |
16 |
15
|
eleq1d |
|- ( y = c -> ( <" A y B "> e. ( A ( 2 WWalksNOn G ) B ) <-> <" A c B "> e. ( A ( 2 WWalksNOn G ) B ) ) ) |
17 |
16
|
anbi2d |
|- ( y = c -> ( ( <" A d B "> e. ( A ( 2 WWalksNOn G ) B ) /\ <" A y B "> e. ( A ( 2 WWalksNOn G ) B ) ) <-> ( <" A d B "> e. ( A ( 2 WWalksNOn G ) B ) /\ <" A c B "> e. ( A ( 2 WWalksNOn G ) B ) ) ) ) |
18 |
|
equequ2 |
|- ( y = c -> ( d = y <-> d = c ) ) |
19 |
17 18
|
imbi12d |
|- ( y = c -> ( ( ( <" A d B "> e. ( A ( 2 WWalksNOn G ) B ) /\ <" A y B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> d = y ) <-> ( ( <" A d B "> e. ( A ( 2 WWalksNOn G ) B ) /\ <" A c B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> d = c ) ) ) |
20 |
14 19
|
rspc2va |
|- ( ( ( d e. V /\ c e. V ) /\ A. x e. V A. y e. V ( ( <" A x B "> e. ( A ( 2 WWalksNOn G ) B ) /\ <" A y B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> x = y ) ) -> ( ( <" A d B "> e. ( A ( 2 WWalksNOn G ) B ) /\ <" A c B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> d = c ) ) |
21 |
|
pm3.35 |
|- ( ( ( <" A d B "> e. ( A ( 2 WWalksNOn G ) B ) /\ <" A c B "> e. ( A ( 2 WWalksNOn G ) B ) ) /\ ( ( <" A d B "> e. ( A ( 2 WWalksNOn G ) B ) /\ <" A c B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> d = c ) ) -> d = c ) |
22 |
|
s3eq2 |
|- ( c = d -> <" A c B "> = <" A d B "> ) |
23 |
22
|
equcoms |
|- ( d = c -> <" A c B "> = <" A d B "> ) |
24 |
23
|
adantr |
|- ( ( d = c /\ ( t = <" A c B "> /\ w = <" A d B "> ) ) -> <" A c B "> = <" A d B "> ) |
25 |
|
eqeq12 |
|- ( ( t = <" A c B "> /\ w = <" A d B "> ) -> ( t = w <-> <" A c B "> = <" A d B "> ) ) |
26 |
25
|
adantl |
|- ( ( d = c /\ ( t = <" A c B "> /\ w = <" A d B "> ) ) -> ( t = w <-> <" A c B "> = <" A d B "> ) ) |
27 |
24 26
|
mpbird |
|- ( ( d = c /\ ( t = <" A c B "> /\ w = <" A d B "> ) ) -> t = w ) |
28 |
27
|
equcomd |
|- ( ( d = c /\ ( t = <" A c B "> /\ w = <" A d B "> ) ) -> w = t ) |
29 |
28
|
ex |
|- ( d = c -> ( ( t = <" A c B "> /\ w = <" A d B "> ) -> w = t ) ) |
30 |
21 29
|
syl |
|- ( ( ( <" A d B "> e. ( A ( 2 WWalksNOn G ) B ) /\ <" A c B "> e. ( A ( 2 WWalksNOn G ) B ) ) /\ ( ( <" A d B "> e. ( A ( 2 WWalksNOn G ) B ) /\ <" A c B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> d = c ) ) -> ( ( t = <" A c B "> /\ w = <" A d B "> ) -> w = t ) ) |
31 |
30
|
ex |
|- ( ( <" A d B "> e. ( A ( 2 WWalksNOn G ) B ) /\ <" A c B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> ( ( ( <" A d B "> e. ( A ( 2 WWalksNOn G ) B ) /\ <" A c B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> d = c ) -> ( ( t = <" A c B "> /\ w = <" A d B "> ) -> w = t ) ) ) |
32 |
31
|
com23 |
|- ( ( <" A d B "> e. ( A ( 2 WWalksNOn G ) B ) /\ <" A c B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> ( ( t = <" A c B "> /\ w = <" A d B "> ) -> ( ( ( <" A d B "> e. ( A ( 2 WWalksNOn G ) B ) /\ <" A c B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> d = c ) -> w = t ) ) ) |
33 |
32
|
exp4b |
|- ( <" A d B "> e. ( A ( 2 WWalksNOn G ) B ) -> ( <" A c B "> e. ( A ( 2 WWalksNOn G ) B ) -> ( t = <" A c B "> -> ( w = <" A d B "> -> ( ( ( <" A d B "> e. ( A ( 2 WWalksNOn G ) B ) /\ <" A c B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> d = c ) -> w = t ) ) ) ) ) |
34 |
33
|
com13 |
|- ( t = <" A c B "> -> ( <" A c B "> e. ( A ( 2 WWalksNOn G ) B ) -> ( <" A d B "> e. ( A ( 2 WWalksNOn G ) B ) -> ( w = <" A d B "> -> ( ( ( <" A d B "> e. ( A ( 2 WWalksNOn G ) B ) /\ <" A c B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> d = c ) -> w = t ) ) ) ) ) |
35 |
34
|
imp |
|- ( ( t = <" A c B "> /\ <" A c B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> ( <" A d B "> e. ( A ( 2 WWalksNOn G ) B ) -> ( w = <" A d B "> -> ( ( ( <" A d B "> e. ( A ( 2 WWalksNOn G ) B ) /\ <" A c B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> d = c ) -> w = t ) ) ) ) |
36 |
35
|
com13 |
|- ( w = <" A d B "> -> ( <" A d B "> e. ( A ( 2 WWalksNOn G ) B ) -> ( ( t = <" A c B "> /\ <" A c B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> ( ( ( <" A d B "> e. ( A ( 2 WWalksNOn G ) B ) /\ <" A c B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> d = c ) -> w = t ) ) ) ) |
37 |
36
|
imp |
|- ( ( w = <" A d B "> /\ <" A d B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> ( ( t = <" A c B "> /\ <" A c B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> ( ( ( <" A d B "> e. ( A ( 2 WWalksNOn G ) B ) /\ <" A c B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> d = c ) -> w = t ) ) ) |
38 |
37
|
com13 |
|- ( ( ( <" A d B "> e. ( A ( 2 WWalksNOn G ) B ) /\ <" A c B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> d = c ) -> ( ( t = <" A c B "> /\ <" A c B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> ( ( w = <" A d B "> /\ <" A d B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> w = t ) ) ) |
39 |
20 38
|
syl |
|- ( ( ( d e. V /\ c e. V ) /\ A. x e. V A. y e. V ( ( <" A x B "> e. ( A ( 2 WWalksNOn G ) B ) /\ <" A y B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> x = y ) ) -> ( ( t = <" A c B "> /\ <" A c B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> ( ( w = <" A d B "> /\ <" A d B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> w = t ) ) ) |
40 |
39
|
expcom |
|- ( A. x e. V A. y e. V ( ( <" A x B "> e. ( A ( 2 WWalksNOn G ) B ) /\ <" A y B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> x = y ) -> ( ( d e. V /\ c e. V ) -> ( ( t = <" A c B "> /\ <" A c B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> ( ( w = <" A d B "> /\ <" A d B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> w = t ) ) ) ) |
41 |
9 40
|
simplbiim |
|- ( E! x e. V <" A x B "> e. ( A ( 2 WWalksNOn G ) B ) -> ( ( d e. V /\ c e. V ) -> ( ( t = <" A c B "> /\ <" A c B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> ( ( w = <" A d B "> /\ <" A d B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> w = t ) ) ) ) |
42 |
41
|
impl |
|- ( ( ( E! x e. V <" A x B "> e. ( A ( 2 WWalksNOn G ) B ) /\ d e. V ) /\ c e. V ) -> ( ( t = <" A c B "> /\ <" A c B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> ( ( w = <" A d B "> /\ <" A d B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> w = t ) ) ) |
43 |
42
|
rexlimdva |
|- ( ( E! x e. V <" A x B "> e. ( A ( 2 WWalksNOn G ) B ) /\ d e. V ) -> ( E. c e. V ( t = <" A c B "> /\ <" A c B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> ( ( w = <" A d B "> /\ <" A d B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> w = t ) ) ) |
44 |
43
|
com23 |
|- ( ( E! x e. V <" A x B "> e. ( A ( 2 WWalksNOn G ) B ) /\ d e. V ) -> ( ( w = <" A d B "> /\ <" A d B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> ( E. c e. V ( t = <" A c B "> /\ <" A c B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> w = t ) ) ) |
45 |
44
|
rexlimdva |
|- ( E! x e. V <" A x B "> e. ( A ( 2 WWalksNOn G ) B ) -> ( E. d e. V ( w = <" A d B "> /\ <" A d B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> ( E. c e. V ( t = <" A c B "> /\ <" A c B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> w = t ) ) ) |
46 |
45
|
impd |
|- ( E! x e. V <" A x B "> e. ( A ( 2 WWalksNOn G ) B ) -> ( ( E. d e. V ( w = <" A d B "> /\ <" A d B "> e. ( A ( 2 WWalksNOn G ) B ) ) /\ E. c e. V ( t = <" A c B "> /\ <" A c B "> e. ( A ( 2 WWalksNOn G ) B ) ) ) -> w = t ) ) |
47 |
6 46
|
syl |
|- ( ( G e. FriendGraph /\ ( A e. V /\ B e. V ) /\ A =/= B ) -> ( ( E. d e. V ( w = <" A d B "> /\ <" A d B "> e. ( A ( 2 WWalksNOn G ) B ) ) /\ E. c e. V ( t = <" A c B "> /\ <" A c B "> e. ( A ( 2 WWalksNOn G ) B ) ) ) -> w = t ) ) |
48 |
5 47
|
syl5bi |
|- ( ( G e. FriendGraph /\ ( A e. V /\ B e. V ) /\ A =/= B ) -> ( ( w e. ( A ( 2 WWalksNOn G ) B ) /\ t e. ( A ( 2 WWalksNOn G ) B ) ) -> w = t ) ) |
49 |
48
|
alrimivv |
|- ( ( G e. FriendGraph /\ ( A e. V /\ B e. V ) /\ A =/= B ) -> A. w A. t ( ( w e. ( A ( 2 WWalksNOn G ) B ) /\ t e. ( A ( 2 WWalksNOn G ) B ) ) -> w = t ) ) |
50 |
|
eqeuel |
|- ( ( ( A ( 2 WWalksNOn G ) B ) =/= (/) /\ A. w A. t ( ( w e. ( A ( 2 WWalksNOn G ) B ) /\ t e. ( A ( 2 WWalksNOn G ) B ) ) -> w = t ) ) -> E! w w e. ( A ( 2 WWalksNOn G ) B ) ) |
51 |
2 49 50
|
syl2anc |
|- ( ( G e. FriendGraph /\ ( A e. V /\ B e. V ) /\ A =/= B ) -> E! w w e. ( A ( 2 WWalksNOn G ) B ) ) |
52 |
|
ovex |
|- ( A ( 2 WWalksNOn G ) B ) e. _V |
53 |
|
euhash1 |
|- ( ( A ( 2 WWalksNOn G ) B ) e. _V -> ( ( # ` ( A ( 2 WWalksNOn G ) B ) ) = 1 <-> E! w w e. ( A ( 2 WWalksNOn G ) B ) ) ) |
54 |
52 53
|
mp1i |
|- ( ( G e. FriendGraph /\ ( A e. V /\ B e. V ) /\ A =/= B ) -> ( ( # ` ( A ( 2 WWalksNOn G ) B ) ) = 1 <-> E! w w e. ( A ( 2 WWalksNOn G ) B ) ) ) |
55 |
51 54
|
mpbird |
|- ( ( G e. FriendGraph /\ ( A e. V /\ B e. V ) /\ A =/= B ) -> ( # ` ( A ( 2 WWalksNOn G ) B ) ) = 1 ) |