Step |
Hyp |
Ref |
Expression |
1 |
|
simp3l |
|- ( ( G e. FriendGraph /\ A =/= B /\ ( P e. X /\ Q e. Y ) ) -> P e. X ) |
2 |
|
eqid |
|- ( Vtx ` G ) = ( Vtx ` G ) |
3 |
2
|
wwlks2onv |
|- ( ( P e. X /\ <" A P B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> ( A e. ( Vtx ` G ) /\ P e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) ) |
4 |
1 3
|
sylan |
|- ( ( ( G e. FriendGraph /\ A =/= B /\ ( P e. X /\ Q e. Y ) ) /\ <" A P B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> ( A e. ( Vtx ` G ) /\ P e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) ) |
5 |
|
simp3r |
|- ( ( G e. FriendGraph /\ A =/= B /\ ( P e. X /\ Q e. Y ) ) -> Q e. Y ) |
6 |
2
|
wwlks2onv |
|- ( ( Q e. Y /\ <" B Q A "> e. ( B ( 2 WWalksNOn G ) A ) ) -> ( B e. ( Vtx ` G ) /\ Q e. ( Vtx ` G ) /\ A e. ( Vtx ` G ) ) ) |
7 |
5 6
|
sylan |
|- ( ( ( G e. FriendGraph /\ A =/= B /\ ( P e. X /\ Q e. Y ) ) /\ <" B Q A "> e. ( B ( 2 WWalksNOn G ) A ) ) -> ( B e. ( Vtx ` G ) /\ Q e. ( Vtx ` G ) /\ A e. ( Vtx ` G ) ) ) |
8 |
|
frgrusgr |
|- ( G e. FriendGraph -> G e. USGraph ) |
9 |
|
usgrumgr |
|- ( G e. USGraph -> G e. UMGraph ) |
10 |
8 9
|
syl |
|- ( G e. FriendGraph -> G e. UMGraph ) |
11 |
10
|
3ad2ant1 |
|- ( ( G e. FriendGraph /\ A =/= B /\ ( P e. X /\ Q e. Y ) ) -> G e. UMGraph ) |
12 |
|
simpr3 |
|- ( ( Q e. ( Vtx ` G ) /\ ( A e. ( Vtx ` G ) /\ P e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) ) -> B e. ( Vtx ` G ) ) |
13 |
|
simpl |
|- ( ( Q e. ( Vtx ` G ) /\ ( A e. ( Vtx ` G ) /\ P e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) ) -> Q e. ( Vtx ` G ) ) |
14 |
|
simpr1 |
|- ( ( Q e. ( Vtx ` G ) /\ ( A e. ( Vtx ` G ) /\ P e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) ) -> A e. ( Vtx ` G ) ) |
15 |
12 13 14
|
3jca |
|- ( ( Q e. ( Vtx ` G ) /\ ( A e. ( Vtx ` G ) /\ P e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) ) -> ( B e. ( Vtx ` G ) /\ Q e. ( Vtx ` G ) /\ A e. ( Vtx ` G ) ) ) |
16 |
2
|
wwlks2onsym |
|- ( ( G e. UMGraph /\ ( B e. ( Vtx ` G ) /\ Q e. ( Vtx ` G ) /\ A e. ( Vtx ` G ) ) ) -> ( <" B Q A "> e. ( B ( 2 WWalksNOn G ) A ) <-> <" A Q B "> e. ( A ( 2 WWalksNOn G ) B ) ) ) |
17 |
11 15 16
|
syl2anr |
|- ( ( ( Q e. ( Vtx ` G ) /\ ( A e. ( Vtx ` G ) /\ P e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) ) /\ ( G e. FriendGraph /\ A =/= B /\ ( P e. X /\ Q e. Y ) ) ) -> ( <" B Q A "> e. ( B ( 2 WWalksNOn G ) A ) <-> <" A Q B "> e. ( A ( 2 WWalksNOn G ) B ) ) ) |
18 |
|
simpr1 |
|- ( ( ( Q e. ( Vtx ` G ) /\ ( A e. ( Vtx ` G ) /\ P e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) ) /\ ( G e. FriendGraph /\ A =/= B /\ ( P e. X /\ Q e. Y ) ) ) -> G e. FriendGraph ) |
19 |
|
3simpb |
|- ( ( A e. ( Vtx ` G ) /\ P e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) -> ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) ) |
20 |
19
|
ad2antlr |
|- ( ( ( Q e. ( Vtx ` G ) /\ ( A e. ( Vtx ` G ) /\ P e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) ) /\ ( G e. FriendGraph /\ A =/= B /\ ( P e. X /\ Q e. Y ) ) ) -> ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) ) |
21 |
|
simpr2 |
|- ( ( ( Q e. ( Vtx ` G ) /\ ( A e. ( Vtx ` G ) /\ P e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) ) /\ ( G e. FriendGraph /\ A =/= B /\ ( P e. X /\ Q e. Y ) ) ) -> A =/= B ) |
22 |
2
|
frgr2wwlkeu |
|- ( ( G e. FriendGraph /\ ( A e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) /\ A =/= B ) -> E! x e. ( Vtx ` G ) <" A x B "> e. ( A ( 2 WWalksNOn G ) B ) ) |
23 |
18 20 21 22
|
syl3anc |
|- ( ( ( Q e. ( Vtx ` G ) /\ ( A e. ( Vtx ` G ) /\ P e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) ) /\ ( G e. FriendGraph /\ A =/= B /\ ( P e. X /\ Q e. Y ) ) ) -> E! x e. ( Vtx ` G ) <" A x B "> e. ( A ( 2 WWalksNOn G ) B ) ) |
24 |
|
s3eq2 |
|- ( x = Q -> <" A x B "> = <" A Q B "> ) |
25 |
24
|
eleq1d |
|- ( x = Q -> ( <" A x B "> e. ( A ( 2 WWalksNOn G ) B ) <-> <" A Q B "> e. ( A ( 2 WWalksNOn G ) B ) ) ) |
26 |
25
|
riota2 |
|- ( ( Q e. ( Vtx ` G ) /\ E! x e. ( Vtx ` G ) <" A x B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> ( <" A Q B "> e. ( A ( 2 WWalksNOn G ) B ) <-> ( iota_ x e. ( Vtx ` G ) <" A x B "> e. ( A ( 2 WWalksNOn G ) B ) ) = Q ) ) |
27 |
26
|
ad4ant14 |
|- ( ( ( ( Q e. ( Vtx ` G ) /\ ( A e. ( Vtx ` G ) /\ P e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) ) /\ ( G e. FriendGraph /\ A =/= B /\ ( P e. X /\ Q e. Y ) ) ) /\ E! x e. ( Vtx ` G ) <" A x B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> ( <" A Q B "> e. ( A ( 2 WWalksNOn G ) B ) <-> ( iota_ x e. ( Vtx ` G ) <" A x B "> e. ( A ( 2 WWalksNOn G ) B ) ) = Q ) ) |
28 |
|
simplr2 |
|- ( ( ( Q e. ( Vtx ` G ) /\ ( A e. ( Vtx ` G ) /\ P e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) ) /\ ( G e. FriendGraph /\ A =/= B /\ ( P e. X /\ Q e. Y ) ) ) -> P e. ( Vtx ` G ) ) |
29 |
|
s3eq2 |
|- ( x = P -> <" A x B "> = <" A P B "> ) |
30 |
29
|
eleq1d |
|- ( x = P -> ( <" A x B "> e. ( A ( 2 WWalksNOn G ) B ) <-> <" A P B "> e. ( A ( 2 WWalksNOn G ) B ) ) ) |
31 |
30
|
riota2 |
|- ( ( P e. ( Vtx ` G ) /\ E! x e. ( Vtx ` G ) <" A x B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> ( <" A P B "> e. ( A ( 2 WWalksNOn G ) B ) <-> ( iota_ x e. ( Vtx ` G ) <" A x B "> e. ( A ( 2 WWalksNOn G ) B ) ) = P ) ) |
32 |
28 31
|
sylan |
|- ( ( ( ( Q e. ( Vtx ` G ) /\ ( A e. ( Vtx ` G ) /\ P e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) ) /\ ( G e. FriendGraph /\ A =/= B /\ ( P e. X /\ Q e. Y ) ) ) /\ E! x e. ( Vtx ` G ) <" A x B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> ( <" A P B "> e. ( A ( 2 WWalksNOn G ) B ) <-> ( iota_ x e. ( Vtx ` G ) <" A x B "> e. ( A ( 2 WWalksNOn G ) B ) ) = P ) ) |
33 |
|
eqtr2 |
|- ( ( ( iota_ x e. ( Vtx ` G ) <" A x B "> e. ( A ( 2 WWalksNOn G ) B ) ) = Q /\ ( iota_ x e. ( Vtx ` G ) <" A x B "> e. ( A ( 2 WWalksNOn G ) B ) ) = P ) -> Q = P ) |
34 |
33
|
expcom |
|- ( ( iota_ x e. ( Vtx ` G ) <" A x B "> e. ( A ( 2 WWalksNOn G ) B ) ) = P -> ( ( iota_ x e. ( Vtx ` G ) <" A x B "> e. ( A ( 2 WWalksNOn G ) B ) ) = Q -> Q = P ) ) |
35 |
32 34
|
syl6bi |
|- ( ( ( ( Q e. ( Vtx ` G ) /\ ( A e. ( Vtx ` G ) /\ P e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) ) /\ ( G e. FriendGraph /\ A =/= B /\ ( P e. X /\ Q e. Y ) ) ) /\ E! x e. ( Vtx ` G ) <" A x B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> ( <" A P B "> e. ( A ( 2 WWalksNOn G ) B ) -> ( ( iota_ x e. ( Vtx ` G ) <" A x B "> e. ( A ( 2 WWalksNOn G ) B ) ) = Q -> Q = P ) ) ) |
36 |
35
|
com23 |
|- ( ( ( ( Q e. ( Vtx ` G ) /\ ( A e. ( Vtx ` G ) /\ P e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) ) /\ ( G e. FriendGraph /\ A =/= B /\ ( P e. X /\ Q e. Y ) ) ) /\ E! x e. ( Vtx ` G ) <" A x B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> ( ( iota_ x e. ( Vtx ` G ) <" A x B "> e. ( A ( 2 WWalksNOn G ) B ) ) = Q -> ( <" A P B "> e. ( A ( 2 WWalksNOn G ) B ) -> Q = P ) ) ) |
37 |
27 36
|
sylbid |
|- ( ( ( ( Q e. ( Vtx ` G ) /\ ( A e. ( Vtx ` G ) /\ P e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) ) /\ ( G e. FriendGraph /\ A =/= B /\ ( P e. X /\ Q e. Y ) ) ) /\ E! x e. ( Vtx ` G ) <" A x B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> ( <" A Q B "> e. ( A ( 2 WWalksNOn G ) B ) -> ( <" A P B "> e. ( A ( 2 WWalksNOn G ) B ) -> Q = P ) ) ) |
38 |
23 37
|
mpdan |
|- ( ( ( Q e. ( Vtx ` G ) /\ ( A e. ( Vtx ` G ) /\ P e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) ) /\ ( G e. FriendGraph /\ A =/= B /\ ( P e. X /\ Q e. Y ) ) ) -> ( <" A Q B "> e. ( A ( 2 WWalksNOn G ) B ) -> ( <" A P B "> e. ( A ( 2 WWalksNOn G ) B ) -> Q = P ) ) ) |
39 |
17 38
|
sylbid |
|- ( ( ( Q e. ( Vtx ` G ) /\ ( A e. ( Vtx ` G ) /\ P e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) ) /\ ( G e. FriendGraph /\ A =/= B /\ ( P e. X /\ Q e. Y ) ) ) -> ( <" B Q A "> e. ( B ( 2 WWalksNOn G ) A ) -> ( <" A P B "> e. ( A ( 2 WWalksNOn G ) B ) -> Q = P ) ) ) |
40 |
39
|
expimpd |
|- ( ( Q e. ( Vtx ` G ) /\ ( A e. ( Vtx ` G ) /\ P e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) ) -> ( ( ( G e. FriendGraph /\ A =/= B /\ ( P e. X /\ Q e. Y ) ) /\ <" B Q A "> e. ( B ( 2 WWalksNOn G ) A ) ) -> ( <" A P B "> e. ( A ( 2 WWalksNOn G ) B ) -> Q = P ) ) ) |
41 |
40
|
ex |
|- ( Q e. ( Vtx ` G ) -> ( ( A e. ( Vtx ` G ) /\ P e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) -> ( ( ( G e. FriendGraph /\ A =/= B /\ ( P e. X /\ Q e. Y ) ) /\ <" B Q A "> e. ( B ( 2 WWalksNOn G ) A ) ) -> ( <" A P B "> e. ( A ( 2 WWalksNOn G ) B ) -> Q = P ) ) ) ) |
42 |
41
|
com23 |
|- ( Q e. ( Vtx ` G ) -> ( ( ( G e. FriendGraph /\ A =/= B /\ ( P e. X /\ Q e. Y ) ) /\ <" B Q A "> e. ( B ( 2 WWalksNOn G ) A ) ) -> ( ( A e. ( Vtx ` G ) /\ P e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) -> ( <" A P B "> e. ( A ( 2 WWalksNOn G ) B ) -> Q = P ) ) ) ) |
43 |
42
|
3ad2ant2 |
|- ( ( B e. ( Vtx ` G ) /\ Q e. ( Vtx ` G ) /\ A e. ( Vtx ` G ) ) -> ( ( ( G e. FriendGraph /\ A =/= B /\ ( P e. X /\ Q e. Y ) ) /\ <" B Q A "> e. ( B ( 2 WWalksNOn G ) A ) ) -> ( ( A e. ( Vtx ` G ) /\ P e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) -> ( <" A P B "> e. ( A ( 2 WWalksNOn G ) B ) -> Q = P ) ) ) ) |
44 |
7 43
|
mpcom |
|- ( ( ( G e. FriendGraph /\ A =/= B /\ ( P e. X /\ Q e. Y ) ) /\ <" B Q A "> e. ( B ( 2 WWalksNOn G ) A ) ) -> ( ( A e. ( Vtx ` G ) /\ P e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) -> ( <" A P B "> e. ( A ( 2 WWalksNOn G ) B ) -> Q = P ) ) ) |
45 |
44
|
ex |
|- ( ( G e. FriendGraph /\ A =/= B /\ ( P e. X /\ Q e. Y ) ) -> ( <" B Q A "> e. ( B ( 2 WWalksNOn G ) A ) -> ( ( A e. ( Vtx ` G ) /\ P e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) -> ( <" A P B "> e. ( A ( 2 WWalksNOn G ) B ) -> Q = P ) ) ) ) |
46 |
45
|
com24 |
|- ( ( G e. FriendGraph /\ A =/= B /\ ( P e. X /\ Q e. Y ) ) -> ( <" A P B "> e. ( A ( 2 WWalksNOn G ) B ) -> ( ( A e. ( Vtx ` G ) /\ P e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) -> ( <" B Q A "> e. ( B ( 2 WWalksNOn G ) A ) -> Q = P ) ) ) ) |
47 |
46
|
imp |
|- ( ( ( G e. FriendGraph /\ A =/= B /\ ( P e. X /\ Q e. Y ) ) /\ <" A P B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> ( ( A e. ( Vtx ` G ) /\ P e. ( Vtx ` G ) /\ B e. ( Vtx ` G ) ) -> ( <" B Q A "> e. ( B ( 2 WWalksNOn G ) A ) -> Q = P ) ) ) |
48 |
4 47
|
mpd |
|- ( ( ( G e. FriendGraph /\ A =/= B /\ ( P e. X /\ Q e. Y ) ) /\ <" A P B "> e. ( A ( 2 WWalksNOn G ) B ) ) -> ( <" B Q A "> e. ( B ( 2 WWalksNOn G ) A ) -> Q = P ) ) |
49 |
48
|
expimpd |
|- ( ( G e. FriendGraph /\ A =/= B /\ ( P e. X /\ Q e. Y ) ) -> ( ( <" A P B "> e. ( A ( 2 WWalksNOn G ) B ) /\ <" B Q A "> e. ( B ( 2 WWalksNOn G ) A ) ) -> Q = P ) ) |