Step |
Hyp |
Ref |
Expression |
1 |
|
frgr2wwlkeu.v |
|- V = ( Vtx ` G ) |
2 |
1
|
frgr2wwlkeu |
|- ( ( G e. FriendGraph /\ ( A e. V /\ B e. V ) /\ A =/= B ) -> E! c e. V <" A c B "> e. ( A ( 2 WWalksNOn G ) B ) ) |
3 |
|
reurex |
|- ( E! c e. V <" A c B "> e. ( A ( 2 WWalksNOn G ) B ) -> E. c e. V <" A c B "> e. ( A ( 2 WWalksNOn G ) B ) ) |
4 |
|
ne0i |
|- ( <" A c B "> e. ( A ( 2 WWalksNOn G ) B ) -> ( A ( 2 WWalksNOn G ) B ) =/= (/) ) |
5 |
4
|
rexlimivw |
|- ( E. c e. V <" A c B "> e. ( A ( 2 WWalksNOn G ) B ) -> ( A ( 2 WWalksNOn G ) B ) =/= (/) ) |
6 |
2 3 5
|
3syl |
|- ( ( G e. FriendGraph /\ ( A e. V /\ B e. V ) /\ A =/= B ) -> ( A ( 2 WWalksNOn G ) B ) =/= (/) ) |