Step |
Hyp |
Ref |
Expression |
1 |
|
frgrhash2wsp.v |
|- V = ( Vtx ` G ) |
2 |
|
2nn |
|- 2 e. NN |
3 |
1
|
wspniunwspnon |
|- ( ( 2 e. NN /\ G e. FriendGraph ) -> ( 2 WSPathsN G ) = U_ a e. V U_ b e. ( V \ { a } ) ( a ( 2 WSPathsNOn G ) b ) ) |
4 |
2 3
|
mpan |
|- ( G e. FriendGraph -> ( 2 WSPathsN G ) = U_ a e. V U_ b e. ( V \ { a } ) ( a ( 2 WSPathsNOn G ) b ) ) |
5 |
4
|
fveq2d |
|- ( G e. FriendGraph -> ( # ` ( 2 WSPathsN G ) ) = ( # ` U_ a e. V U_ b e. ( V \ { a } ) ( a ( 2 WSPathsNOn G ) b ) ) ) |
6 |
5
|
adantr |
|- ( ( G e. FriendGraph /\ V e. Fin ) -> ( # ` ( 2 WSPathsN G ) ) = ( # ` U_ a e. V U_ b e. ( V \ { a } ) ( a ( 2 WSPathsNOn G ) b ) ) ) |
7 |
|
simpr |
|- ( ( G e. FriendGraph /\ V e. Fin ) -> V e. Fin ) |
8 |
|
eqid |
|- ( V \ { a } ) = ( V \ { a } ) |
9 |
1
|
eleq1i |
|- ( V e. Fin <-> ( Vtx ` G ) e. Fin ) |
10 |
|
wspthnonfi |
|- ( ( Vtx ` G ) e. Fin -> ( a ( 2 WSPathsNOn G ) b ) e. Fin ) |
11 |
9 10
|
sylbi |
|- ( V e. Fin -> ( a ( 2 WSPathsNOn G ) b ) e. Fin ) |
12 |
11
|
adantl |
|- ( ( G e. FriendGraph /\ V e. Fin ) -> ( a ( 2 WSPathsNOn G ) b ) e. Fin ) |
13 |
12
|
3ad2ant1 |
|- ( ( ( G e. FriendGraph /\ V e. Fin ) /\ a e. V /\ b e. ( V \ { a } ) ) -> ( a ( 2 WSPathsNOn G ) b ) e. Fin ) |
14 |
|
2wspiundisj |
|- Disj_ a e. V U_ b e. ( V \ { a } ) ( a ( 2 WSPathsNOn G ) b ) |
15 |
14
|
a1i |
|- ( ( G e. FriendGraph /\ V e. Fin ) -> Disj_ a e. V U_ b e. ( V \ { a } ) ( a ( 2 WSPathsNOn G ) b ) ) |
16 |
|
2wspdisj |
|- Disj_ b e. ( V \ { a } ) ( a ( 2 WSPathsNOn G ) b ) |
17 |
16
|
a1i |
|- ( ( ( G e. FriendGraph /\ V e. Fin ) /\ a e. V ) -> Disj_ b e. ( V \ { a } ) ( a ( 2 WSPathsNOn G ) b ) ) |
18 |
|
simplll |
|- ( ( ( ( G e. FriendGraph /\ V e. Fin ) /\ a e. V ) /\ b e. ( V \ { a } ) ) -> G e. FriendGraph ) |
19 |
|
simpr |
|- ( ( ( G e. FriendGraph /\ V e. Fin ) /\ a e. V ) -> a e. V ) |
20 |
|
eldifi |
|- ( b e. ( V \ { a } ) -> b e. V ) |
21 |
19 20
|
anim12i |
|- ( ( ( ( G e. FriendGraph /\ V e. Fin ) /\ a e. V ) /\ b e. ( V \ { a } ) ) -> ( a e. V /\ b e. V ) ) |
22 |
|
eldifsni |
|- ( b e. ( V \ { a } ) -> b =/= a ) |
23 |
22
|
necomd |
|- ( b e. ( V \ { a } ) -> a =/= b ) |
24 |
23
|
adantl |
|- ( ( ( ( G e. FriendGraph /\ V e. Fin ) /\ a e. V ) /\ b e. ( V \ { a } ) ) -> a =/= b ) |
25 |
1
|
frgr2wsp1 |
|- ( ( G e. FriendGraph /\ ( a e. V /\ b e. V ) /\ a =/= b ) -> ( # ` ( a ( 2 WSPathsNOn G ) b ) ) = 1 ) |
26 |
18 21 24 25
|
syl3anc |
|- ( ( ( ( G e. FriendGraph /\ V e. Fin ) /\ a e. V ) /\ b e. ( V \ { a } ) ) -> ( # ` ( a ( 2 WSPathsNOn G ) b ) ) = 1 ) |
27 |
26
|
3impa |
|- ( ( ( G e. FriendGraph /\ V e. Fin ) /\ a e. V /\ b e. ( V \ { a } ) ) -> ( # ` ( a ( 2 WSPathsNOn G ) b ) ) = 1 ) |
28 |
7 8 13 15 17 27
|
hash2iun1dif1 |
|- ( ( G e. FriendGraph /\ V e. Fin ) -> ( # ` U_ a e. V U_ b e. ( V \ { a } ) ( a ( 2 WSPathsNOn G ) b ) ) = ( ( # ` V ) x. ( ( # ` V ) - 1 ) ) ) |
29 |
6 28
|
eqtrd |
|- ( ( G e. FriendGraph /\ V e. Fin ) -> ( # ` ( 2 WSPathsN G ) ) = ( ( # ` V ) x. ( ( # ` V ) - 1 ) ) ) |