Step |
Hyp |
Ref |
Expression |
1 |
|
frgrncvvdeq.v |
|- V = ( Vtx ` G ) |
2 |
|
frgrncvvdeq.d |
|- D = ( VtxDeg ` G ) |
3 |
|
ovexd |
|- ( ( ( G e. FriendGraph /\ ( x e. V /\ y e. ( V \ { x } ) ) ) /\ y e/ ( G NeighbVtx x ) ) -> ( G NeighbVtx x ) e. _V ) |
4 |
|
eqid |
|- ( Edg ` G ) = ( Edg ` G ) |
5 |
|
eqid |
|- ( G NeighbVtx x ) = ( G NeighbVtx x ) |
6 |
|
eqid |
|- ( G NeighbVtx y ) = ( G NeighbVtx y ) |
7 |
|
simpl |
|- ( ( x e. V /\ y e. ( V \ { x } ) ) -> x e. V ) |
8 |
7
|
ad2antlr |
|- ( ( ( G e. FriendGraph /\ ( x e. V /\ y e. ( V \ { x } ) ) ) /\ y e/ ( G NeighbVtx x ) ) -> x e. V ) |
9 |
|
eldifi |
|- ( y e. ( V \ { x } ) -> y e. V ) |
10 |
9
|
adantl |
|- ( ( x e. V /\ y e. ( V \ { x } ) ) -> y e. V ) |
11 |
10
|
ad2antlr |
|- ( ( ( G e. FriendGraph /\ ( x e. V /\ y e. ( V \ { x } ) ) ) /\ y e/ ( G NeighbVtx x ) ) -> y e. V ) |
12 |
|
eldif |
|- ( y e. ( V \ { x } ) <-> ( y e. V /\ -. y e. { x } ) ) |
13 |
|
velsn |
|- ( y e. { x } <-> y = x ) |
14 |
13
|
biimpri |
|- ( y = x -> y e. { x } ) |
15 |
14
|
equcoms |
|- ( x = y -> y e. { x } ) |
16 |
15
|
necon3bi |
|- ( -. y e. { x } -> x =/= y ) |
17 |
12 16
|
simplbiim |
|- ( y e. ( V \ { x } ) -> x =/= y ) |
18 |
17
|
adantl |
|- ( ( x e. V /\ y e. ( V \ { x } ) ) -> x =/= y ) |
19 |
18
|
ad2antlr |
|- ( ( ( G e. FriendGraph /\ ( x e. V /\ y e. ( V \ { x } ) ) ) /\ y e/ ( G NeighbVtx x ) ) -> x =/= y ) |
20 |
|
simpr |
|- ( ( ( G e. FriendGraph /\ ( x e. V /\ y e. ( V \ { x } ) ) ) /\ y e/ ( G NeighbVtx x ) ) -> y e/ ( G NeighbVtx x ) ) |
21 |
|
simpl |
|- ( ( G e. FriendGraph /\ ( x e. V /\ y e. ( V \ { x } ) ) ) -> G e. FriendGraph ) |
22 |
21
|
adantr |
|- ( ( ( G e. FriendGraph /\ ( x e. V /\ y e. ( V \ { x } ) ) ) /\ y e/ ( G NeighbVtx x ) ) -> G e. FriendGraph ) |
23 |
|
eqid |
|- ( a e. ( G NeighbVtx x ) |-> ( iota_ b e. ( G NeighbVtx y ) { a , b } e. ( Edg ` G ) ) ) = ( a e. ( G NeighbVtx x ) |-> ( iota_ b e. ( G NeighbVtx y ) { a , b } e. ( Edg ` G ) ) ) |
24 |
1 4 5 6 8 11 19 20 22 23
|
frgrncvvdeqlem10 |
|- ( ( ( G e. FriendGraph /\ ( x e. V /\ y e. ( V \ { x } ) ) ) /\ y e/ ( G NeighbVtx x ) ) -> ( a e. ( G NeighbVtx x ) |-> ( iota_ b e. ( G NeighbVtx y ) { a , b } e. ( Edg ` G ) ) ) : ( G NeighbVtx x ) -1-1-onto-> ( G NeighbVtx y ) ) |
25 |
3 24
|
hasheqf1od |
|- ( ( ( G e. FriendGraph /\ ( x e. V /\ y e. ( V \ { x } ) ) ) /\ y e/ ( G NeighbVtx x ) ) -> ( # ` ( G NeighbVtx x ) ) = ( # ` ( G NeighbVtx y ) ) ) |
26 |
|
frgrusgr |
|- ( G e. FriendGraph -> G e. USGraph ) |
27 |
26 7
|
anim12i |
|- ( ( G e. FriendGraph /\ ( x e. V /\ y e. ( V \ { x } ) ) ) -> ( G e. USGraph /\ x e. V ) ) |
28 |
27
|
adantr |
|- ( ( ( G e. FriendGraph /\ ( x e. V /\ y e. ( V \ { x } ) ) ) /\ y e/ ( G NeighbVtx x ) ) -> ( G e. USGraph /\ x e. V ) ) |
29 |
1
|
hashnbusgrvd |
|- ( ( G e. USGraph /\ x e. V ) -> ( # ` ( G NeighbVtx x ) ) = ( ( VtxDeg ` G ) ` x ) ) |
30 |
28 29
|
syl |
|- ( ( ( G e. FriendGraph /\ ( x e. V /\ y e. ( V \ { x } ) ) ) /\ y e/ ( G NeighbVtx x ) ) -> ( # ` ( G NeighbVtx x ) ) = ( ( VtxDeg ` G ) ` x ) ) |
31 |
26 10
|
anim12i |
|- ( ( G e. FriendGraph /\ ( x e. V /\ y e. ( V \ { x } ) ) ) -> ( G e. USGraph /\ y e. V ) ) |
32 |
31
|
adantr |
|- ( ( ( G e. FriendGraph /\ ( x e. V /\ y e. ( V \ { x } ) ) ) /\ y e/ ( G NeighbVtx x ) ) -> ( G e. USGraph /\ y e. V ) ) |
33 |
1
|
hashnbusgrvd |
|- ( ( G e. USGraph /\ y e. V ) -> ( # ` ( G NeighbVtx y ) ) = ( ( VtxDeg ` G ) ` y ) ) |
34 |
32 33
|
syl |
|- ( ( ( G e. FriendGraph /\ ( x e. V /\ y e. ( V \ { x } ) ) ) /\ y e/ ( G NeighbVtx x ) ) -> ( # ` ( G NeighbVtx y ) ) = ( ( VtxDeg ` G ) ` y ) ) |
35 |
25 30 34
|
3eqtr3d |
|- ( ( ( G e. FriendGraph /\ ( x e. V /\ y e. ( V \ { x } ) ) ) /\ y e/ ( G NeighbVtx x ) ) -> ( ( VtxDeg ` G ) ` x ) = ( ( VtxDeg ` G ) ` y ) ) |
36 |
2
|
fveq1i |
|- ( D ` x ) = ( ( VtxDeg ` G ) ` x ) |
37 |
2
|
fveq1i |
|- ( D ` y ) = ( ( VtxDeg ` G ) ` y ) |
38 |
35 36 37
|
3eqtr4g |
|- ( ( ( G e. FriendGraph /\ ( x e. V /\ y e. ( V \ { x } ) ) ) /\ y e/ ( G NeighbVtx x ) ) -> ( D ` x ) = ( D ` y ) ) |
39 |
38
|
ex |
|- ( ( G e. FriendGraph /\ ( x e. V /\ y e. ( V \ { x } ) ) ) -> ( y e/ ( G NeighbVtx x ) -> ( D ` x ) = ( D ` y ) ) ) |
40 |
39
|
ralrimivva |
|- ( G e. FriendGraph -> A. x e. V A. y e. ( V \ { x } ) ( y e/ ( G NeighbVtx x ) -> ( D ` x ) = ( D ` y ) ) ) |