Step |
Hyp |
Ref |
Expression |
1 |
|
frgrncvvdeq.v1 |
|- V = ( Vtx ` G ) |
2 |
|
frgrncvvdeq.e |
|- E = ( Edg ` G ) |
3 |
|
frgrncvvdeq.nx |
|- D = ( G NeighbVtx X ) |
4 |
|
frgrncvvdeq.ny |
|- N = ( G NeighbVtx Y ) |
5 |
|
frgrncvvdeq.x |
|- ( ph -> X e. V ) |
6 |
|
frgrncvvdeq.y |
|- ( ph -> Y e. V ) |
7 |
|
frgrncvvdeq.ne |
|- ( ph -> X =/= Y ) |
8 |
|
frgrncvvdeq.xy |
|- ( ph -> Y e/ D ) |
9 |
|
frgrncvvdeq.f |
|- ( ph -> G e. FriendGraph ) |
10 |
|
frgrncvvdeq.a |
|- A = ( x e. D |-> ( iota_ y e. N { x , y } e. E ) ) |
11 |
|
df-nel |
|- ( Y e/ D <-> -. Y e. D ) |
12 |
3
|
eleq2i |
|- ( Y e. D <-> Y e. ( G NeighbVtx X ) ) |
13 |
11 12
|
xchbinx |
|- ( Y e/ D <-> -. Y e. ( G NeighbVtx X ) ) |
14 |
8 13
|
sylib |
|- ( ph -> -. Y e. ( G NeighbVtx X ) ) |
15 |
|
nbgrsym |
|- ( X e. ( G NeighbVtx Y ) <-> Y e. ( G NeighbVtx X ) ) |
16 |
14 15
|
sylnibr |
|- ( ph -> -. X e. ( G NeighbVtx Y ) ) |
17 |
|
neleq2 |
|- ( N = ( G NeighbVtx Y ) -> ( X e/ N <-> X e/ ( G NeighbVtx Y ) ) ) |
18 |
4 17
|
ax-mp |
|- ( X e/ N <-> X e/ ( G NeighbVtx Y ) ) |
19 |
|
df-nel |
|- ( X e/ ( G NeighbVtx Y ) <-> -. X e. ( G NeighbVtx Y ) ) |
20 |
18 19
|
bitri |
|- ( X e/ N <-> -. X e. ( G NeighbVtx Y ) ) |
21 |
16 20
|
sylibr |
|- ( ph -> X e/ N ) |