Metamath Proof Explorer


Theorem frgrncvvdeqlem10

Description: Lemma 10 for frgrncvvdeq . (Contributed by Alexander van der Vekens, 24-Dec-2017) (Revised by AV, 10-May-2021) (Proof shortened by AV, 30-Dec-2021)

Ref Expression
Hypotheses frgrncvvdeq.v1
|- V = ( Vtx ` G )
frgrncvvdeq.e
|- E = ( Edg ` G )
frgrncvvdeq.nx
|- D = ( G NeighbVtx X )
frgrncvvdeq.ny
|- N = ( G NeighbVtx Y )
frgrncvvdeq.x
|- ( ph -> X e. V )
frgrncvvdeq.y
|- ( ph -> Y e. V )
frgrncvvdeq.ne
|- ( ph -> X =/= Y )
frgrncvvdeq.xy
|- ( ph -> Y e/ D )
frgrncvvdeq.f
|- ( ph -> G e. FriendGraph )
frgrncvvdeq.a
|- A = ( x e. D |-> ( iota_ y e. N { x , y } e. E ) )
Assertion frgrncvvdeqlem10
|- ( ph -> A : D -1-1-onto-> N )

Proof

Step Hyp Ref Expression
1 frgrncvvdeq.v1
 |-  V = ( Vtx ` G )
2 frgrncvvdeq.e
 |-  E = ( Edg ` G )
3 frgrncvvdeq.nx
 |-  D = ( G NeighbVtx X )
4 frgrncvvdeq.ny
 |-  N = ( G NeighbVtx Y )
5 frgrncvvdeq.x
 |-  ( ph -> X e. V )
6 frgrncvvdeq.y
 |-  ( ph -> Y e. V )
7 frgrncvvdeq.ne
 |-  ( ph -> X =/= Y )
8 frgrncvvdeq.xy
 |-  ( ph -> Y e/ D )
9 frgrncvvdeq.f
 |-  ( ph -> G e. FriendGraph )
10 frgrncvvdeq.a
 |-  A = ( x e. D |-> ( iota_ y e. N { x , y } e. E ) )
11 1 2 3 4 5 6 7 8 9 10 frgrncvvdeqlem8
 |-  ( ph -> A : D -1-1-> N )
12 1 2 3 4 5 6 7 8 9 10 frgrncvvdeqlem9
 |-  ( ph -> A : D -onto-> N )
13 df-f1o
 |-  ( A : D -1-1-onto-> N <-> ( A : D -1-1-> N /\ A : D -onto-> N ) )
14 11 12 13 sylanbrc
 |-  ( ph -> A : D -1-1-onto-> N )