Description: Lemma 10 for frgrncvvdeq . (Contributed by Alexander van der Vekens, 24-Dec-2017) (Revised by AV, 10-May-2021) (Proof shortened by AV, 30-Dec-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | frgrncvvdeq.v1 | |- V = ( Vtx ` G ) |
|
frgrncvvdeq.e | |- E = ( Edg ` G ) |
||
frgrncvvdeq.nx | |- D = ( G NeighbVtx X ) |
||
frgrncvvdeq.ny | |- N = ( G NeighbVtx Y ) |
||
frgrncvvdeq.x | |- ( ph -> X e. V ) |
||
frgrncvvdeq.y | |- ( ph -> Y e. V ) |
||
frgrncvvdeq.ne | |- ( ph -> X =/= Y ) |
||
frgrncvvdeq.xy | |- ( ph -> Y e/ D ) |
||
frgrncvvdeq.f | |- ( ph -> G e. FriendGraph ) |
||
frgrncvvdeq.a | |- A = ( x e. D |-> ( iota_ y e. N { x , y } e. E ) ) |
||
Assertion | frgrncvvdeqlem10 | |- ( ph -> A : D -1-1-onto-> N ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frgrncvvdeq.v1 | |- V = ( Vtx ` G ) |
|
2 | frgrncvvdeq.e | |- E = ( Edg ` G ) |
|
3 | frgrncvvdeq.nx | |- D = ( G NeighbVtx X ) |
|
4 | frgrncvvdeq.ny | |- N = ( G NeighbVtx Y ) |
|
5 | frgrncvvdeq.x | |- ( ph -> X e. V ) |
|
6 | frgrncvvdeq.y | |- ( ph -> Y e. V ) |
|
7 | frgrncvvdeq.ne | |- ( ph -> X =/= Y ) |
|
8 | frgrncvvdeq.xy | |- ( ph -> Y e/ D ) |
|
9 | frgrncvvdeq.f | |- ( ph -> G e. FriendGraph ) |
|
10 | frgrncvvdeq.a | |- A = ( x e. D |-> ( iota_ y e. N { x , y } e. E ) ) |
|
11 | 1 2 3 4 5 6 7 8 9 10 | frgrncvvdeqlem8 | |- ( ph -> A : D -1-1-> N ) |
12 | 1 2 3 4 5 6 7 8 9 10 | frgrncvvdeqlem9 | |- ( ph -> A : D -onto-> N ) |
13 | df-f1o | |- ( A : D -1-1-onto-> N <-> ( A : D -1-1-> N /\ A : D -onto-> N ) ) |
|
14 | 11 12 13 | sylanbrc | |- ( ph -> A : D -1-1-onto-> N ) |