Metamath Proof Explorer


Theorem frgrncvvdeqlem5

Description: Lemma 5 for frgrncvvdeq . The mapping of neighbors to neighbors applied on a vertex is the intersection of the corresponding neighborhoods. (Contributed by Alexander van der Vekens, 23-Dec-2017) (Revised by AV, 10-May-2021)

Ref Expression
Hypotheses frgrncvvdeq.v1
|- V = ( Vtx ` G )
frgrncvvdeq.e
|- E = ( Edg ` G )
frgrncvvdeq.nx
|- D = ( G NeighbVtx X )
frgrncvvdeq.ny
|- N = ( G NeighbVtx Y )
frgrncvvdeq.x
|- ( ph -> X e. V )
frgrncvvdeq.y
|- ( ph -> Y e. V )
frgrncvvdeq.ne
|- ( ph -> X =/= Y )
frgrncvvdeq.xy
|- ( ph -> Y e/ D )
frgrncvvdeq.f
|- ( ph -> G e. FriendGraph )
frgrncvvdeq.a
|- A = ( x e. D |-> ( iota_ y e. N { x , y } e. E ) )
Assertion frgrncvvdeqlem5
|- ( ( ph /\ x e. D ) -> { ( A ` x ) } = ( ( G NeighbVtx x ) i^i N ) )

Proof

Step Hyp Ref Expression
1 frgrncvvdeq.v1
 |-  V = ( Vtx ` G )
2 frgrncvvdeq.e
 |-  E = ( Edg ` G )
3 frgrncvvdeq.nx
 |-  D = ( G NeighbVtx X )
4 frgrncvvdeq.ny
 |-  N = ( G NeighbVtx Y )
5 frgrncvvdeq.x
 |-  ( ph -> X e. V )
6 frgrncvvdeq.y
 |-  ( ph -> Y e. V )
7 frgrncvvdeq.ne
 |-  ( ph -> X =/= Y )
8 frgrncvvdeq.xy
 |-  ( ph -> Y e/ D )
9 frgrncvvdeq.f
 |-  ( ph -> G e. FriendGraph )
10 frgrncvvdeq.a
 |-  A = ( x e. D |-> ( iota_ y e. N { x , y } e. E ) )
11 simpr
 |-  ( ( ph /\ x e. D ) -> x e. D )
12 riotaex
 |-  ( iota_ y e. N { x , y } e. E ) e. _V
13 10 fvmpt2
 |-  ( ( x e. D /\ ( iota_ y e. N { x , y } e. E ) e. _V ) -> ( A ` x ) = ( iota_ y e. N { x , y } e. E ) )
14 11 12 13 sylancl
 |-  ( ( ph /\ x e. D ) -> ( A ` x ) = ( iota_ y e. N { x , y } e. E ) )
15 14 sneqd
 |-  ( ( ph /\ x e. D ) -> { ( A ` x ) } = { ( iota_ y e. N { x , y } e. E ) } )
16 1 2 3 4 5 6 7 8 9 10 frgrncvvdeqlem3
 |-  ( ( ph /\ x e. D ) -> { ( iota_ y e. N { x , y } e. E ) } = ( ( G NeighbVtx x ) i^i N ) )
17 15 16 eqtrd
 |-  ( ( ph /\ x e. D ) -> { ( A ` x ) } = ( ( G NeighbVtx x ) i^i N ) )