Step |
Hyp |
Ref |
Expression |
1 |
|
frgrncvvdeq.v1 |
|- V = ( Vtx ` G ) |
2 |
|
frgrncvvdeq.e |
|- E = ( Edg ` G ) |
3 |
|
frgrncvvdeq.nx |
|- D = ( G NeighbVtx X ) |
4 |
|
frgrncvvdeq.ny |
|- N = ( G NeighbVtx Y ) |
5 |
|
frgrncvvdeq.x |
|- ( ph -> X e. V ) |
6 |
|
frgrncvvdeq.y |
|- ( ph -> Y e. V ) |
7 |
|
frgrncvvdeq.ne |
|- ( ph -> X =/= Y ) |
8 |
|
frgrncvvdeq.xy |
|- ( ph -> Y e/ D ) |
9 |
|
frgrncvvdeq.f |
|- ( ph -> G e. FriendGraph ) |
10 |
|
frgrncvvdeq.a |
|- A = ( x e. D |-> ( iota_ y e. N { x , y } e. E ) ) |
11 |
|
simpr |
|- ( ( ph /\ x e. D ) -> x e. D ) |
12 |
|
riotaex |
|- ( iota_ y e. N { x , y } e. E ) e. _V |
13 |
10
|
fvmpt2 |
|- ( ( x e. D /\ ( iota_ y e. N { x , y } e. E ) e. _V ) -> ( A ` x ) = ( iota_ y e. N { x , y } e. E ) ) |
14 |
11 12 13
|
sylancl |
|- ( ( ph /\ x e. D ) -> ( A ` x ) = ( iota_ y e. N { x , y } e. E ) ) |
15 |
14
|
sneqd |
|- ( ( ph /\ x e. D ) -> { ( A ` x ) } = { ( iota_ y e. N { x , y } e. E ) } ) |
16 |
1 2 3 4 5 6 7 8 9 10
|
frgrncvvdeqlem3 |
|- ( ( ph /\ x e. D ) -> { ( iota_ y e. N { x , y } e. E ) } = ( ( G NeighbVtx x ) i^i N ) ) |
17 |
15 16
|
eqtrd |
|- ( ( ph /\ x e. D ) -> { ( A ` x ) } = ( ( G NeighbVtx x ) i^i N ) ) |