Metamath Proof Explorer


Theorem frgrncvvdeqlem6

Description: Lemma 6 for frgrncvvdeq . (Contributed by Alexander van der Vekens, 23-Dec-2017) (Revised by AV, 10-May-2021) (Proof shortened by AV, 30-Dec-2021)

Ref Expression
Hypotheses frgrncvvdeq.v1
|- V = ( Vtx ` G )
frgrncvvdeq.e
|- E = ( Edg ` G )
frgrncvvdeq.nx
|- D = ( G NeighbVtx X )
frgrncvvdeq.ny
|- N = ( G NeighbVtx Y )
frgrncvvdeq.x
|- ( ph -> X e. V )
frgrncvvdeq.y
|- ( ph -> Y e. V )
frgrncvvdeq.ne
|- ( ph -> X =/= Y )
frgrncvvdeq.xy
|- ( ph -> Y e/ D )
frgrncvvdeq.f
|- ( ph -> G e. FriendGraph )
frgrncvvdeq.a
|- A = ( x e. D |-> ( iota_ y e. N { x , y } e. E ) )
Assertion frgrncvvdeqlem6
|- ( ( ph /\ x e. D ) -> { x , ( A ` x ) } e. E )

Proof

Step Hyp Ref Expression
1 frgrncvvdeq.v1
 |-  V = ( Vtx ` G )
2 frgrncvvdeq.e
 |-  E = ( Edg ` G )
3 frgrncvvdeq.nx
 |-  D = ( G NeighbVtx X )
4 frgrncvvdeq.ny
 |-  N = ( G NeighbVtx Y )
5 frgrncvvdeq.x
 |-  ( ph -> X e. V )
6 frgrncvvdeq.y
 |-  ( ph -> Y e. V )
7 frgrncvvdeq.ne
 |-  ( ph -> X =/= Y )
8 frgrncvvdeq.xy
 |-  ( ph -> Y e/ D )
9 frgrncvvdeq.f
 |-  ( ph -> G e. FriendGraph )
10 frgrncvvdeq.a
 |-  A = ( x e. D |-> ( iota_ y e. N { x , y } e. E ) )
11 1 2 3 4 5 6 7 8 9 10 frgrncvvdeqlem5
 |-  ( ( ph /\ x e. D ) -> { ( A ` x ) } = ( ( G NeighbVtx x ) i^i N ) )
12 fvex
 |-  ( A ` x ) e. _V
13 elinsn
 |-  ( ( ( A ` x ) e. _V /\ ( ( G NeighbVtx x ) i^i N ) = { ( A ` x ) } ) -> ( ( A ` x ) e. ( G NeighbVtx x ) /\ ( A ` x ) e. N ) )
14 12 13 mpan
 |-  ( ( ( G NeighbVtx x ) i^i N ) = { ( A ` x ) } -> ( ( A ` x ) e. ( G NeighbVtx x ) /\ ( A ` x ) e. N ) )
15 frgrusgr
 |-  ( G e. FriendGraph -> G e. USGraph )
16 2 nbusgreledg
 |-  ( G e. USGraph -> ( ( A ` x ) e. ( G NeighbVtx x ) <-> { ( A ` x ) , x } e. E ) )
17 prcom
 |-  { ( A ` x ) , x } = { x , ( A ` x ) }
18 17 eleq1i
 |-  ( { ( A ` x ) , x } e. E <-> { x , ( A ` x ) } e. E )
19 16 18 bitrdi
 |-  ( G e. USGraph -> ( ( A ` x ) e. ( G NeighbVtx x ) <-> { x , ( A ` x ) } e. E ) )
20 19 biimpd
 |-  ( G e. USGraph -> ( ( A ` x ) e. ( G NeighbVtx x ) -> { x , ( A ` x ) } e. E ) )
21 9 15 20 3syl
 |-  ( ph -> ( ( A ` x ) e. ( G NeighbVtx x ) -> { x , ( A ` x ) } e. E ) )
22 21 adantr
 |-  ( ( ph /\ x e. D ) -> ( ( A ` x ) e. ( G NeighbVtx x ) -> { x , ( A ` x ) } e. E ) )
23 22 com12
 |-  ( ( A ` x ) e. ( G NeighbVtx x ) -> ( ( ph /\ x e. D ) -> { x , ( A ` x ) } e. E ) )
24 23 adantr
 |-  ( ( ( A ` x ) e. ( G NeighbVtx x ) /\ ( A ` x ) e. N ) -> ( ( ph /\ x e. D ) -> { x , ( A ` x ) } e. E ) )
25 14 24 syl
 |-  ( ( ( G NeighbVtx x ) i^i N ) = { ( A ` x ) } -> ( ( ph /\ x e. D ) -> { x , ( A ` x ) } e. E ) )
26 25 eqcoms
 |-  ( { ( A ` x ) } = ( ( G NeighbVtx x ) i^i N ) -> ( ( ph /\ x e. D ) -> { x , ( A ` x ) } e. E ) )
27 11 26 mpcom
 |-  ( ( ph /\ x e. D ) -> { x , ( A ` x ) } e. E )