Metamath Proof Explorer


Theorem frgrncvvdeqlem7

Description: Lemma 7 for frgrncvvdeq . This corresponds to statement 1 in Huneke p. 1: "This common neighbor cannot be x, as x and y are not adjacent.". This is only an observation, which is not required to proof the friendship theorem. (Contributed by Alexander van der Vekens, 23-Dec-2017) (Revised by AV, 10-May-2021)

Ref Expression
Hypotheses frgrncvvdeq.v1
|- V = ( Vtx ` G )
frgrncvvdeq.e
|- E = ( Edg ` G )
frgrncvvdeq.nx
|- D = ( G NeighbVtx X )
frgrncvvdeq.ny
|- N = ( G NeighbVtx Y )
frgrncvvdeq.x
|- ( ph -> X e. V )
frgrncvvdeq.y
|- ( ph -> Y e. V )
frgrncvvdeq.ne
|- ( ph -> X =/= Y )
frgrncvvdeq.xy
|- ( ph -> Y e/ D )
frgrncvvdeq.f
|- ( ph -> G e. FriendGraph )
frgrncvvdeq.a
|- A = ( x e. D |-> ( iota_ y e. N { x , y } e. E ) )
Assertion frgrncvvdeqlem7
|- ( ph -> A. x e. D ( A ` x ) =/= X )

Proof

Step Hyp Ref Expression
1 frgrncvvdeq.v1
 |-  V = ( Vtx ` G )
2 frgrncvvdeq.e
 |-  E = ( Edg ` G )
3 frgrncvvdeq.nx
 |-  D = ( G NeighbVtx X )
4 frgrncvvdeq.ny
 |-  N = ( G NeighbVtx Y )
5 frgrncvvdeq.x
 |-  ( ph -> X e. V )
6 frgrncvvdeq.y
 |-  ( ph -> Y e. V )
7 frgrncvvdeq.ne
 |-  ( ph -> X =/= Y )
8 frgrncvvdeq.xy
 |-  ( ph -> Y e/ D )
9 frgrncvvdeq.f
 |-  ( ph -> G e. FriendGraph )
10 frgrncvvdeq.a
 |-  A = ( x e. D |-> ( iota_ y e. N { x , y } e. E ) )
11 1 2 3 4 5 6 7 8 9 10 frgrncvvdeqlem5
 |-  ( ( ph /\ x e. D ) -> { ( A ` x ) } = ( ( G NeighbVtx x ) i^i N ) )
12 fvex
 |-  ( A ` x ) e. _V
13 12 snid
 |-  ( A ` x ) e. { ( A ` x ) }
14 eleq2
 |-  ( { ( A ` x ) } = ( ( G NeighbVtx x ) i^i N ) -> ( ( A ` x ) e. { ( A ` x ) } <-> ( A ` x ) e. ( ( G NeighbVtx x ) i^i N ) ) )
15 14 biimpa
 |-  ( ( { ( A ` x ) } = ( ( G NeighbVtx x ) i^i N ) /\ ( A ` x ) e. { ( A ` x ) } ) -> ( A ` x ) e. ( ( G NeighbVtx x ) i^i N ) )
16 elin
 |-  ( ( A ` x ) e. ( ( G NeighbVtx x ) i^i N ) <-> ( ( A ` x ) e. ( G NeighbVtx x ) /\ ( A ` x ) e. N ) )
17 1 2 3 4 5 6 7 8 9 10 frgrncvvdeqlem1
 |-  ( ph -> X e/ N )
18 df-nel
 |-  ( X e/ N <-> -. X e. N )
19 nelelne
 |-  ( -. X e. N -> ( ( A ` x ) e. N -> ( A ` x ) =/= X ) )
20 18 19 sylbi
 |-  ( X e/ N -> ( ( A ` x ) e. N -> ( A ` x ) =/= X ) )
21 17 20 syl
 |-  ( ph -> ( ( A ` x ) e. N -> ( A ` x ) =/= X ) )
22 21 adantr
 |-  ( ( ph /\ x e. D ) -> ( ( A ` x ) e. N -> ( A ` x ) =/= X ) )
23 22 com12
 |-  ( ( A ` x ) e. N -> ( ( ph /\ x e. D ) -> ( A ` x ) =/= X ) )
24 16 23 simplbiim
 |-  ( ( A ` x ) e. ( ( G NeighbVtx x ) i^i N ) -> ( ( ph /\ x e. D ) -> ( A ` x ) =/= X ) )
25 15 24 syl
 |-  ( ( { ( A ` x ) } = ( ( G NeighbVtx x ) i^i N ) /\ ( A ` x ) e. { ( A ` x ) } ) -> ( ( ph /\ x e. D ) -> ( A ` x ) =/= X ) )
26 13 25 mpan2
 |-  ( { ( A ` x ) } = ( ( G NeighbVtx x ) i^i N ) -> ( ( ph /\ x e. D ) -> ( A ` x ) =/= X ) )
27 11 26 mpcom
 |-  ( ( ph /\ x e. D ) -> ( A ` x ) =/= X )
28 27 ralrimiva
 |-  ( ph -> A. x e. D ( A ` x ) =/= X )