Step |
Hyp |
Ref |
Expression |
1 |
|
frgrncvvdeq.v1 |
|- V = ( Vtx ` G ) |
2 |
|
frgrncvvdeq.e |
|- E = ( Edg ` G ) |
3 |
|
frgrncvvdeq.nx |
|- D = ( G NeighbVtx X ) |
4 |
|
frgrncvvdeq.ny |
|- N = ( G NeighbVtx Y ) |
5 |
|
frgrncvvdeq.x |
|- ( ph -> X e. V ) |
6 |
|
frgrncvvdeq.y |
|- ( ph -> Y e. V ) |
7 |
|
frgrncvvdeq.ne |
|- ( ph -> X =/= Y ) |
8 |
|
frgrncvvdeq.xy |
|- ( ph -> Y e/ D ) |
9 |
|
frgrncvvdeq.f |
|- ( ph -> G e. FriendGraph ) |
10 |
|
frgrncvvdeq.a |
|- A = ( x e. D |-> ( iota_ y e. N { x , y } e. E ) ) |
11 |
1 2 3 4 5 6 7 8 9 10
|
frgrncvvdeqlem4 |
|- ( ph -> A : D --> N ) |
12 |
9
|
adantr |
|- ( ( ph /\ n e. N ) -> G e. FriendGraph ) |
13 |
4
|
eleq2i |
|- ( n e. N <-> n e. ( G NeighbVtx Y ) ) |
14 |
1
|
nbgrisvtx |
|- ( n e. ( G NeighbVtx Y ) -> n e. V ) |
15 |
14
|
a1i |
|- ( ph -> ( n e. ( G NeighbVtx Y ) -> n e. V ) ) |
16 |
13 15
|
syl5bi |
|- ( ph -> ( n e. N -> n e. V ) ) |
17 |
16
|
imp |
|- ( ( ph /\ n e. N ) -> n e. V ) |
18 |
5
|
adantr |
|- ( ( ph /\ n e. N ) -> X e. V ) |
19 |
1 2 3 4 5 6 7 8 9 10
|
frgrncvvdeqlem1 |
|- ( ph -> X e/ N ) |
20 |
|
df-nel |
|- ( X e/ N <-> -. X e. N ) |
21 |
|
nelelne |
|- ( -. X e. N -> ( n e. N -> n =/= X ) ) |
22 |
20 21
|
sylbi |
|- ( X e/ N -> ( n e. N -> n =/= X ) ) |
23 |
19 22
|
syl |
|- ( ph -> ( n e. N -> n =/= X ) ) |
24 |
23
|
imp |
|- ( ( ph /\ n e. N ) -> n =/= X ) |
25 |
17 18 24
|
3jca |
|- ( ( ph /\ n e. N ) -> ( n e. V /\ X e. V /\ n =/= X ) ) |
26 |
12 25
|
jca |
|- ( ( ph /\ n e. N ) -> ( G e. FriendGraph /\ ( n e. V /\ X e. V /\ n =/= X ) ) ) |
27 |
1 2
|
frcond2 |
|- ( G e. FriendGraph -> ( ( n e. V /\ X e. V /\ n =/= X ) -> E! m e. V ( { n , m } e. E /\ { m , X } e. E ) ) ) |
28 |
27
|
imp |
|- ( ( G e. FriendGraph /\ ( n e. V /\ X e. V /\ n =/= X ) ) -> E! m e. V ( { n , m } e. E /\ { m , X } e. E ) ) |
29 |
|
reurex |
|- ( E! m e. V ( { n , m } e. E /\ { m , X } e. E ) -> E. m e. V ( { n , m } e. E /\ { m , X } e. E ) ) |
30 |
|
df-rex |
|- ( E. m e. V ( { n , m } e. E /\ { m , X } e. E ) <-> E. m ( m e. V /\ ( { n , m } e. E /\ { m , X } e. E ) ) ) |
31 |
29 30
|
sylib |
|- ( E! m e. V ( { n , m } e. E /\ { m , X } e. E ) -> E. m ( m e. V /\ ( { n , m } e. E /\ { m , X } e. E ) ) ) |
32 |
26 28 31
|
3syl |
|- ( ( ph /\ n e. N ) -> E. m ( m e. V /\ ( { n , m } e. E /\ { m , X } e. E ) ) ) |
33 |
|
frgrusgr |
|- ( G e. FriendGraph -> G e. USGraph ) |
34 |
2
|
nbusgreledg |
|- ( G e. USGraph -> ( m e. ( G NeighbVtx X ) <-> { m , X } e. E ) ) |
35 |
34
|
bicomd |
|- ( G e. USGraph -> ( { m , X } e. E <-> m e. ( G NeighbVtx X ) ) ) |
36 |
9 33 35
|
3syl |
|- ( ph -> ( { m , X } e. E <-> m e. ( G NeighbVtx X ) ) ) |
37 |
36
|
biimpa |
|- ( ( ph /\ { m , X } e. E ) -> m e. ( G NeighbVtx X ) ) |
38 |
3
|
eleq2i |
|- ( m e. D <-> m e. ( G NeighbVtx X ) ) |
39 |
37 38
|
sylibr |
|- ( ( ph /\ { m , X } e. E ) -> m e. D ) |
40 |
39
|
ad2ant2rl |
|- ( ( ( ph /\ n e. N ) /\ ( { n , m } e. E /\ { m , X } e. E ) ) -> m e. D ) |
41 |
2
|
nbusgreledg |
|- ( G e. USGraph -> ( n e. ( G NeighbVtx m ) <-> { n , m } e. E ) ) |
42 |
41
|
biimpar |
|- ( ( G e. USGraph /\ { n , m } e. E ) -> n e. ( G NeighbVtx m ) ) |
43 |
42
|
a1d |
|- ( ( G e. USGraph /\ { n , m } e. E ) -> ( { m , X } e. E -> n e. ( G NeighbVtx m ) ) ) |
44 |
43
|
expimpd |
|- ( G e. USGraph -> ( ( { n , m } e. E /\ { m , X } e. E ) -> n e. ( G NeighbVtx m ) ) ) |
45 |
9 33 44
|
3syl |
|- ( ph -> ( ( { n , m } e. E /\ { m , X } e. E ) -> n e. ( G NeighbVtx m ) ) ) |
46 |
45
|
adantr |
|- ( ( ph /\ n e. N ) -> ( ( { n , m } e. E /\ { m , X } e. E ) -> n e. ( G NeighbVtx m ) ) ) |
47 |
46
|
imp |
|- ( ( ( ph /\ n e. N ) /\ ( { n , m } e. E /\ { m , X } e. E ) ) -> n e. ( G NeighbVtx m ) ) |
48 |
|
elin |
|- ( n e. ( ( G NeighbVtx m ) i^i N ) <-> ( n e. ( G NeighbVtx m ) /\ n e. N ) ) |
49 |
|
simpl |
|- ( ( ph /\ { m , X } e. E ) -> ph ) |
50 |
49 39
|
jca |
|- ( ( ph /\ { m , X } e. E ) -> ( ph /\ m e. D ) ) |
51 |
|
preq1 |
|- ( x = m -> { x , y } = { m , y } ) |
52 |
51
|
eleq1d |
|- ( x = m -> ( { x , y } e. E <-> { m , y } e. E ) ) |
53 |
52
|
riotabidv |
|- ( x = m -> ( iota_ y e. N { x , y } e. E ) = ( iota_ y e. N { m , y } e. E ) ) |
54 |
53
|
cbvmptv |
|- ( x e. D |-> ( iota_ y e. N { x , y } e. E ) ) = ( m e. D |-> ( iota_ y e. N { m , y } e. E ) ) |
55 |
10 54
|
eqtri |
|- A = ( m e. D |-> ( iota_ y e. N { m , y } e. E ) ) |
56 |
1 2 3 4 5 6 7 8 9 55
|
frgrncvvdeqlem5 |
|- ( ( ph /\ m e. D ) -> { ( A ` m ) } = ( ( G NeighbVtx m ) i^i N ) ) |
57 |
|
eleq2 |
|- ( ( ( G NeighbVtx m ) i^i N ) = { ( A ` m ) } -> ( n e. ( ( G NeighbVtx m ) i^i N ) <-> n e. { ( A ` m ) } ) ) |
58 |
57
|
eqcoms |
|- ( { ( A ` m ) } = ( ( G NeighbVtx m ) i^i N ) -> ( n e. ( ( G NeighbVtx m ) i^i N ) <-> n e. { ( A ` m ) } ) ) |
59 |
|
elsni |
|- ( n e. { ( A ` m ) } -> n = ( A ` m ) ) |
60 |
58 59
|
syl6bi |
|- ( { ( A ` m ) } = ( ( G NeighbVtx m ) i^i N ) -> ( n e. ( ( G NeighbVtx m ) i^i N ) -> n = ( A ` m ) ) ) |
61 |
50 56 60
|
3syl |
|- ( ( ph /\ { m , X } e. E ) -> ( n e. ( ( G NeighbVtx m ) i^i N ) -> n = ( A ` m ) ) ) |
62 |
61
|
expcom |
|- ( { m , X } e. E -> ( ph -> ( n e. ( ( G NeighbVtx m ) i^i N ) -> n = ( A ` m ) ) ) ) |
63 |
62
|
com3r |
|- ( n e. ( ( G NeighbVtx m ) i^i N ) -> ( { m , X } e. E -> ( ph -> n = ( A ` m ) ) ) ) |
64 |
48 63
|
sylbir |
|- ( ( n e. ( G NeighbVtx m ) /\ n e. N ) -> ( { m , X } e. E -> ( ph -> n = ( A ` m ) ) ) ) |
65 |
64
|
ex |
|- ( n e. ( G NeighbVtx m ) -> ( n e. N -> ( { m , X } e. E -> ( ph -> n = ( A ` m ) ) ) ) ) |
66 |
65
|
com14 |
|- ( ph -> ( n e. N -> ( { m , X } e. E -> ( n e. ( G NeighbVtx m ) -> n = ( A ` m ) ) ) ) ) |
67 |
66
|
imp |
|- ( ( ph /\ n e. N ) -> ( { m , X } e. E -> ( n e. ( G NeighbVtx m ) -> n = ( A ` m ) ) ) ) |
68 |
67
|
adantld |
|- ( ( ph /\ n e. N ) -> ( ( { n , m } e. E /\ { m , X } e. E ) -> ( n e. ( G NeighbVtx m ) -> n = ( A ` m ) ) ) ) |
69 |
68
|
imp |
|- ( ( ( ph /\ n e. N ) /\ ( { n , m } e. E /\ { m , X } e. E ) ) -> ( n e. ( G NeighbVtx m ) -> n = ( A ` m ) ) ) |
70 |
47 69
|
mpd |
|- ( ( ( ph /\ n e. N ) /\ ( { n , m } e. E /\ { m , X } e. E ) ) -> n = ( A ` m ) ) |
71 |
40 70
|
jca |
|- ( ( ( ph /\ n e. N ) /\ ( { n , m } e. E /\ { m , X } e. E ) ) -> ( m e. D /\ n = ( A ` m ) ) ) |
72 |
71
|
ex |
|- ( ( ph /\ n e. N ) -> ( ( { n , m } e. E /\ { m , X } e. E ) -> ( m e. D /\ n = ( A ` m ) ) ) ) |
73 |
72
|
adantld |
|- ( ( ph /\ n e. N ) -> ( ( m e. V /\ ( { n , m } e. E /\ { m , X } e. E ) ) -> ( m e. D /\ n = ( A ` m ) ) ) ) |
74 |
73
|
eximdv |
|- ( ( ph /\ n e. N ) -> ( E. m ( m e. V /\ ( { n , m } e. E /\ { m , X } e. E ) ) -> E. m ( m e. D /\ n = ( A ` m ) ) ) ) |
75 |
32 74
|
mpd |
|- ( ( ph /\ n e. N ) -> E. m ( m e. D /\ n = ( A ` m ) ) ) |
76 |
|
df-rex |
|- ( E. m e. D n = ( A ` m ) <-> E. m ( m e. D /\ n = ( A ` m ) ) ) |
77 |
75 76
|
sylibr |
|- ( ( ph /\ n e. N ) -> E. m e. D n = ( A ` m ) ) |
78 |
77
|
ralrimiva |
|- ( ph -> A. n e. N E. m e. D n = ( A ` m ) ) |
79 |
|
dffo3 |
|- ( A : D -onto-> N <-> ( A : D --> N /\ A. n e. N E. m e. D n = ( A ` m ) ) ) |
80 |
11 78 79
|
sylanbrc |
|- ( ph -> A : D -onto-> N ) |