Step |
Hyp |
Ref |
Expression |
1 |
|
frgrreggt1.v |
|- V = ( Vtx ` G ) |
2 |
|
ancom |
|- ( ( V e. Fin /\ V =/= (/) ) <-> ( V =/= (/) /\ V e. Fin ) ) |
3 |
|
ancom |
|- ( ( G e. FriendGraph /\ G RegUSGraph K ) <-> ( G RegUSGraph K /\ G e. FriendGraph ) ) |
4 |
2 3
|
anbi12i |
|- ( ( ( V e. Fin /\ V =/= (/) ) /\ ( G e. FriendGraph /\ G RegUSGraph K ) ) <-> ( ( V =/= (/) /\ V e. Fin ) /\ ( G RegUSGraph K /\ G e. FriendGraph ) ) ) |
5 |
4
|
biimpi |
|- ( ( ( V e. Fin /\ V =/= (/) ) /\ ( G e. FriendGraph /\ G RegUSGraph K ) ) -> ( ( V =/= (/) /\ V e. Fin ) /\ ( G RegUSGraph K /\ G e. FriendGraph ) ) ) |
6 |
5
|
ancomd |
|- ( ( ( V e. Fin /\ V =/= (/) ) /\ ( G e. FriendGraph /\ G RegUSGraph K ) ) -> ( ( G RegUSGraph K /\ G e. FriendGraph ) /\ ( V =/= (/) /\ V e. Fin ) ) ) |
7 |
1
|
numclwwlk7lem |
|- ( ( ( G RegUSGraph K /\ G e. FriendGraph ) /\ ( V =/= (/) /\ V e. Fin ) ) -> K e. NN0 ) |
8 |
6 7
|
syl |
|- ( ( ( V e. Fin /\ V =/= (/) ) /\ ( G e. FriendGraph /\ G RegUSGraph K ) ) -> K e. NN0 ) |
9 |
|
neanior |
|- ( ( K =/= 0 /\ K =/= 2 ) <-> -. ( K = 0 \/ K = 2 ) ) |
10 |
|
nn0re |
|- ( K e. NN0 -> K e. RR ) |
11 |
|
1re |
|- 1 e. RR |
12 |
|
lenlt |
|- ( ( K e. RR /\ 1 e. RR ) -> ( K <_ 1 <-> -. 1 < K ) ) |
13 |
10 11 12
|
sylancl |
|- ( K e. NN0 -> ( K <_ 1 <-> -. 1 < K ) ) |
14 |
13
|
adantl |
|- ( ( ( K =/= 0 /\ K =/= 2 ) /\ K e. NN0 ) -> ( K <_ 1 <-> -. 1 < K ) ) |
15 |
|
elnnne0 |
|- ( K e. NN <-> ( K e. NN0 /\ K =/= 0 ) ) |
16 |
|
nnle1eq1 |
|- ( K e. NN -> ( K <_ 1 <-> K = 1 ) ) |
17 |
16
|
biimpd |
|- ( K e. NN -> ( K <_ 1 -> K = 1 ) ) |
18 |
15 17
|
sylbir |
|- ( ( K e. NN0 /\ K =/= 0 ) -> ( K <_ 1 -> K = 1 ) ) |
19 |
18
|
a1d |
|- ( ( K e. NN0 /\ K =/= 0 ) -> ( K =/= 2 -> ( K <_ 1 -> K = 1 ) ) ) |
20 |
19
|
expimpd |
|- ( K e. NN0 -> ( ( K =/= 0 /\ K =/= 2 ) -> ( K <_ 1 -> K = 1 ) ) ) |
21 |
20
|
impcom |
|- ( ( ( K =/= 0 /\ K =/= 2 ) /\ K e. NN0 ) -> ( K <_ 1 -> K = 1 ) ) |
22 |
14 21
|
sylbird |
|- ( ( ( K =/= 0 /\ K =/= 2 ) /\ K e. NN0 ) -> ( -. 1 < K -> K = 1 ) ) |
23 |
1
|
fveq2i |
|- ( # ` V ) = ( # ` ( Vtx ` G ) ) |
24 |
23
|
eqeq1i |
|- ( ( # ` V ) = 1 <-> ( # ` ( Vtx ` G ) ) = 1 ) |
25 |
24
|
biimpi |
|- ( ( # ` V ) = 1 -> ( # ` ( Vtx ` G ) ) = 1 ) |
26 |
|
simpr |
|- ( ( G e. FriendGraph /\ G RegUSGraph K ) -> G RegUSGraph K ) |
27 |
26
|
adantl |
|- ( ( ( V e. Fin /\ V =/= (/) ) /\ ( G e. FriendGraph /\ G RegUSGraph K ) ) -> G RegUSGraph K ) |
28 |
|
rusgr1vtx |
|- ( ( ( # ` ( Vtx ` G ) ) = 1 /\ G RegUSGraph K ) -> K = 0 ) |
29 |
25 27 28
|
syl2an |
|- ( ( ( # ` V ) = 1 /\ ( ( V e. Fin /\ V =/= (/) ) /\ ( G e. FriendGraph /\ G RegUSGraph K ) ) ) -> K = 0 ) |
30 |
29
|
orcd |
|- ( ( ( # ` V ) = 1 /\ ( ( V e. Fin /\ V =/= (/) ) /\ ( G e. FriendGraph /\ G RegUSGraph K ) ) ) -> ( K = 0 \/ K = 2 ) ) |
31 |
30
|
ex |
|- ( ( # ` V ) = 1 -> ( ( ( V e. Fin /\ V =/= (/) ) /\ ( G e. FriendGraph /\ G RegUSGraph K ) ) -> ( K = 0 \/ K = 2 ) ) ) |
32 |
31
|
a1d |
|- ( ( # ` V ) = 1 -> ( K = 1 -> ( ( ( V e. Fin /\ V =/= (/) ) /\ ( G e. FriendGraph /\ G RegUSGraph K ) ) -> ( K = 0 \/ K = 2 ) ) ) ) |
33 |
|
eqid |
|- ( VtxDeg ` G ) = ( VtxDeg ` G ) |
34 |
1 33
|
rusgrprop0 |
|- ( G RegUSGraph K -> ( G e. USGraph /\ K e. NN0* /\ A. v e. V ( ( VtxDeg ` G ) ` v ) = K ) ) |
35 |
|
simp2 |
|- ( ( -. ( # ` V ) = 1 /\ G e. FriendGraph /\ ( V e. Fin /\ V =/= (/) ) ) -> G e. FriendGraph ) |
36 |
|
hashnncl |
|- ( V e. Fin -> ( ( # ` V ) e. NN <-> V =/= (/) ) ) |
37 |
|
df-ne |
|- ( ( # ` V ) =/= 1 <-> -. ( # ` V ) = 1 ) |
38 |
|
nngt1ne1 |
|- ( ( # ` V ) e. NN -> ( 1 < ( # ` V ) <-> ( # ` V ) =/= 1 ) ) |
39 |
38
|
biimprd |
|- ( ( # ` V ) e. NN -> ( ( # ` V ) =/= 1 -> 1 < ( # ` V ) ) ) |
40 |
37 39
|
syl5bir |
|- ( ( # ` V ) e. NN -> ( -. ( # ` V ) = 1 -> 1 < ( # ` V ) ) ) |
41 |
36 40
|
syl6bir |
|- ( V e. Fin -> ( V =/= (/) -> ( -. ( # ` V ) = 1 -> 1 < ( # ` V ) ) ) ) |
42 |
41
|
imp |
|- ( ( V e. Fin /\ V =/= (/) ) -> ( -. ( # ` V ) = 1 -> 1 < ( # ` V ) ) ) |
43 |
42
|
impcom |
|- ( ( -. ( # ` V ) = 1 /\ ( V e. Fin /\ V =/= (/) ) ) -> 1 < ( # ` V ) ) |
44 |
1
|
vdgn1frgrv3 |
|- ( ( G e. FriendGraph /\ 1 < ( # ` V ) ) -> A. v e. V ( ( VtxDeg ` G ) ` v ) =/= 1 ) |
45 |
35 43 44
|
3imp3i2an |
|- ( ( -. ( # ` V ) = 1 /\ G e. FriendGraph /\ ( V e. Fin /\ V =/= (/) ) ) -> A. v e. V ( ( VtxDeg ` G ) ` v ) =/= 1 ) |
46 |
|
r19.26 |
|- ( A. v e. V ( ( ( VtxDeg ` G ) ` v ) =/= 1 /\ ( ( VtxDeg ` G ) ` v ) = K ) <-> ( A. v e. V ( ( VtxDeg ` G ) ` v ) =/= 1 /\ A. v e. V ( ( VtxDeg ` G ) ` v ) = K ) ) |
47 |
|
r19.2z |
|- ( ( V =/= (/) /\ A. v e. V ( ( ( VtxDeg ` G ) ` v ) =/= 1 /\ ( ( VtxDeg ` G ) ` v ) = K ) ) -> E. v e. V ( ( ( VtxDeg ` G ) ` v ) =/= 1 /\ ( ( VtxDeg ` G ) ` v ) = K ) ) |
48 |
|
neeq1 |
|- ( ( ( VtxDeg ` G ) ` v ) = K -> ( ( ( VtxDeg ` G ) ` v ) =/= 1 <-> K =/= 1 ) ) |
49 |
48
|
biimpd |
|- ( ( ( VtxDeg ` G ) ` v ) = K -> ( ( ( VtxDeg ` G ) ` v ) =/= 1 -> K =/= 1 ) ) |
50 |
49
|
impcom |
|- ( ( ( ( VtxDeg ` G ) ` v ) =/= 1 /\ ( ( VtxDeg ` G ) ` v ) = K ) -> K =/= 1 ) |
51 |
|
eqneqall |
|- ( K = 1 -> ( K =/= 1 -> ( K = 0 \/ K = 2 ) ) ) |
52 |
51
|
com12 |
|- ( K =/= 1 -> ( K = 1 -> ( K = 0 \/ K = 2 ) ) ) |
53 |
50 52
|
syl |
|- ( ( ( ( VtxDeg ` G ) ` v ) =/= 1 /\ ( ( VtxDeg ` G ) ` v ) = K ) -> ( K = 1 -> ( K = 0 \/ K = 2 ) ) ) |
54 |
53
|
rexlimivw |
|- ( E. v e. V ( ( ( VtxDeg ` G ) ` v ) =/= 1 /\ ( ( VtxDeg ` G ) ` v ) = K ) -> ( K = 1 -> ( K = 0 \/ K = 2 ) ) ) |
55 |
47 54
|
syl |
|- ( ( V =/= (/) /\ A. v e. V ( ( ( VtxDeg ` G ) ` v ) =/= 1 /\ ( ( VtxDeg ` G ) ` v ) = K ) ) -> ( K = 1 -> ( K = 0 \/ K = 2 ) ) ) |
56 |
55
|
ex |
|- ( V =/= (/) -> ( A. v e. V ( ( ( VtxDeg ` G ) ` v ) =/= 1 /\ ( ( VtxDeg ` G ) ` v ) = K ) -> ( K = 1 -> ( K = 0 \/ K = 2 ) ) ) ) |
57 |
46 56
|
syl5bir |
|- ( V =/= (/) -> ( ( A. v e. V ( ( VtxDeg ` G ) ` v ) =/= 1 /\ A. v e. V ( ( VtxDeg ` G ) ` v ) = K ) -> ( K = 1 -> ( K = 0 \/ K = 2 ) ) ) ) |
58 |
57
|
expd |
|- ( V =/= (/) -> ( A. v e. V ( ( VtxDeg ` G ) ` v ) =/= 1 -> ( A. v e. V ( ( VtxDeg ` G ) ` v ) = K -> ( K = 1 -> ( K = 0 \/ K = 2 ) ) ) ) ) |
59 |
58
|
com34 |
|- ( V =/= (/) -> ( A. v e. V ( ( VtxDeg ` G ) ` v ) =/= 1 -> ( K = 1 -> ( A. v e. V ( ( VtxDeg ` G ) ` v ) = K -> ( K = 0 \/ K = 2 ) ) ) ) ) |
60 |
59
|
adantl |
|- ( ( V e. Fin /\ V =/= (/) ) -> ( A. v e. V ( ( VtxDeg ` G ) ` v ) =/= 1 -> ( K = 1 -> ( A. v e. V ( ( VtxDeg ` G ) ` v ) = K -> ( K = 0 \/ K = 2 ) ) ) ) ) |
61 |
60
|
3ad2ant3 |
|- ( ( -. ( # ` V ) = 1 /\ G e. FriendGraph /\ ( V e. Fin /\ V =/= (/) ) ) -> ( A. v e. V ( ( VtxDeg ` G ) ` v ) =/= 1 -> ( K = 1 -> ( A. v e. V ( ( VtxDeg ` G ) ` v ) = K -> ( K = 0 \/ K = 2 ) ) ) ) ) |
62 |
45 61
|
mpd |
|- ( ( -. ( # ` V ) = 1 /\ G e. FriendGraph /\ ( V e. Fin /\ V =/= (/) ) ) -> ( K = 1 -> ( A. v e. V ( ( VtxDeg ` G ) ` v ) = K -> ( K = 0 \/ K = 2 ) ) ) ) |
63 |
62
|
3exp |
|- ( -. ( # ` V ) = 1 -> ( G e. FriendGraph -> ( ( V e. Fin /\ V =/= (/) ) -> ( K = 1 -> ( A. v e. V ( ( VtxDeg ` G ) ` v ) = K -> ( K = 0 \/ K = 2 ) ) ) ) ) ) |
64 |
63
|
com15 |
|- ( A. v e. V ( ( VtxDeg ` G ) ` v ) = K -> ( G e. FriendGraph -> ( ( V e. Fin /\ V =/= (/) ) -> ( K = 1 -> ( -. ( # ` V ) = 1 -> ( K = 0 \/ K = 2 ) ) ) ) ) ) |
65 |
64
|
3ad2ant3 |
|- ( ( G e. USGraph /\ K e. NN0* /\ A. v e. V ( ( VtxDeg ` G ) ` v ) = K ) -> ( G e. FriendGraph -> ( ( V e. Fin /\ V =/= (/) ) -> ( K = 1 -> ( -. ( # ` V ) = 1 -> ( K = 0 \/ K = 2 ) ) ) ) ) ) |
66 |
34 65
|
syl |
|- ( G RegUSGraph K -> ( G e. FriendGraph -> ( ( V e. Fin /\ V =/= (/) ) -> ( K = 1 -> ( -. ( # ` V ) = 1 -> ( K = 0 \/ K = 2 ) ) ) ) ) ) |
67 |
66
|
impcom |
|- ( ( G e. FriendGraph /\ G RegUSGraph K ) -> ( ( V e. Fin /\ V =/= (/) ) -> ( K = 1 -> ( -. ( # ` V ) = 1 -> ( K = 0 \/ K = 2 ) ) ) ) ) |
68 |
67
|
impcom |
|- ( ( ( V e. Fin /\ V =/= (/) ) /\ ( G e. FriendGraph /\ G RegUSGraph K ) ) -> ( K = 1 -> ( -. ( # ` V ) = 1 -> ( K = 0 \/ K = 2 ) ) ) ) |
69 |
68
|
com13 |
|- ( -. ( # ` V ) = 1 -> ( K = 1 -> ( ( ( V e. Fin /\ V =/= (/) ) /\ ( G e. FriendGraph /\ G RegUSGraph K ) ) -> ( K = 0 \/ K = 2 ) ) ) ) |
70 |
32 69
|
pm2.61i |
|- ( K = 1 -> ( ( ( V e. Fin /\ V =/= (/) ) /\ ( G e. FriendGraph /\ G RegUSGraph K ) ) -> ( K = 0 \/ K = 2 ) ) ) |
71 |
22 70
|
syl6 |
|- ( ( ( K =/= 0 /\ K =/= 2 ) /\ K e. NN0 ) -> ( -. 1 < K -> ( ( ( V e. Fin /\ V =/= (/) ) /\ ( G e. FriendGraph /\ G RegUSGraph K ) ) -> ( K = 0 \/ K = 2 ) ) ) ) |
72 |
71
|
ex |
|- ( ( K =/= 0 /\ K =/= 2 ) -> ( K e. NN0 -> ( -. 1 < K -> ( ( ( V e. Fin /\ V =/= (/) ) /\ ( G e. FriendGraph /\ G RegUSGraph K ) ) -> ( K = 0 \/ K = 2 ) ) ) ) ) |
73 |
72
|
com23 |
|- ( ( K =/= 0 /\ K =/= 2 ) -> ( -. 1 < K -> ( K e. NN0 -> ( ( ( V e. Fin /\ V =/= (/) ) /\ ( G e. FriendGraph /\ G RegUSGraph K ) ) -> ( K = 0 \/ K = 2 ) ) ) ) ) |
74 |
9 73
|
sylbir |
|- ( -. ( K = 0 \/ K = 2 ) -> ( -. 1 < K -> ( K e. NN0 -> ( ( ( V e. Fin /\ V =/= (/) ) /\ ( G e. FriendGraph /\ G RegUSGraph K ) ) -> ( K = 0 \/ K = 2 ) ) ) ) ) |
75 |
74
|
impcom |
|- ( ( -. 1 < K /\ -. ( K = 0 \/ K = 2 ) ) -> ( K e. NN0 -> ( ( ( V e. Fin /\ V =/= (/) ) /\ ( G e. FriendGraph /\ G RegUSGraph K ) ) -> ( K = 0 \/ K = 2 ) ) ) ) |
76 |
75
|
com13 |
|- ( ( ( V e. Fin /\ V =/= (/) ) /\ ( G e. FriendGraph /\ G RegUSGraph K ) ) -> ( K e. NN0 -> ( ( -. 1 < K /\ -. ( K = 0 \/ K = 2 ) ) -> ( K = 0 \/ K = 2 ) ) ) ) |
77 |
8 76
|
mpd |
|- ( ( ( V e. Fin /\ V =/= (/) ) /\ ( G e. FriendGraph /\ G RegUSGraph K ) ) -> ( ( -. 1 < K /\ -. ( K = 0 \/ K = 2 ) ) -> ( K = 0 \/ K = 2 ) ) ) |
78 |
77
|
com12 |
|- ( ( -. 1 < K /\ -. ( K = 0 \/ K = 2 ) ) -> ( ( ( V e. Fin /\ V =/= (/) ) /\ ( G e. FriendGraph /\ G RegUSGraph K ) ) -> ( K = 0 \/ K = 2 ) ) ) |
79 |
78
|
exp4b |
|- ( -. 1 < K -> ( -. ( K = 0 \/ K = 2 ) -> ( ( V e. Fin /\ V =/= (/) ) -> ( ( G e. FriendGraph /\ G RegUSGraph K ) -> ( K = 0 \/ K = 2 ) ) ) ) ) |
80 |
|
simprl |
|- ( ( ( 1 < K /\ ( V e. Fin /\ V =/= (/) ) ) /\ ( G e. FriendGraph /\ G RegUSGraph K ) ) -> G e. FriendGraph ) |
81 |
|
simpl |
|- ( ( V e. Fin /\ V =/= (/) ) -> V e. Fin ) |
82 |
81
|
ad2antlr |
|- ( ( ( 1 < K /\ ( V e. Fin /\ V =/= (/) ) ) /\ ( G e. FriendGraph /\ G RegUSGraph K ) ) -> V e. Fin ) |
83 |
|
simpr |
|- ( ( V e. Fin /\ V =/= (/) ) -> V =/= (/) ) |
84 |
83
|
ad2antlr |
|- ( ( ( 1 < K /\ ( V e. Fin /\ V =/= (/) ) ) /\ ( G e. FriendGraph /\ G RegUSGraph K ) ) -> V =/= (/) ) |
85 |
|
simpl |
|- ( ( 1 < K /\ ( V e. Fin /\ V =/= (/) ) ) -> 1 < K ) |
86 |
85 26
|
anim12ci |
|- ( ( ( 1 < K /\ ( V e. Fin /\ V =/= (/) ) ) /\ ( G e. FriendGraph /\ G RegUSGraph K ) ) -> ( G RegUSGraph K /\ 1 < K ) ) |
87 |
1
|
frgrreggt1 |
|- ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) -> ( ( G RegUSGraph K /\ 1 < K ) -> K = 2 ) ) |
88 |
87
|
imp |
|- ( ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) /\ ( G RegUSGraph K /\ 1 < K ) ) -> K = 2 ) |
89 |
80 82 84 86 88
|
syl31anc |
|- ( ( ( 1 < K /\ ( V e. Fin /\ V =/= (/) ) ) /\ ( G e. FriendGraph /\ G RegUSGraph K ) ) -> K = 2 ) |
90 |
89
|
olcd |
|- ( ( ( 1 < K /\ ( V e. Fin /\ V =/= (/) ) ) /\ ( G e. FriendGraph /\ G RegUSGraph K ) ) -> ( K = 0 \/ K = 2 ) ) |
91 |
90
|
exp31 |
|- ( 1 < K -> ( ( V e. Fin /\ V =/= (/) ) -> ( ( G e. FriendGraph /\ G RegUSGraph K ) -> ( K = 0 \/ K = 2 ) ) ) ) |
92 |
|
2a1 |
|- ( ( K = 0 \/ K = 2 ) -> ( ( V e. Fin /\ V =/= (/) ) -> ( ( G e. FriendGraph /\ G RegUSGraph K ) -> ( K = 0 \/ K = 2 ) ) ) ) |
93 |
79 91 92
|
pm2.61ii |
|- ( ( V e. Fin /\ V =/= (/) ) -> ( ( G e. FriendGraph /\ G RegUSGraph K ) -> ( K = 0 \/ K = 2 ) ) ) |