| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							frgrreggt1.v | 
							 |-  V = ( Vtx ` G )  | 
						
						
							| 2 | 
							
								
							 | 
							ancom | 
							 |-  ( ( V e. Fin /\ V =/= (/) ) <-> ( V =/= (/) /\ V e. Fin ) )  | 
						
						
							| 3 | 
							
								
							 | 
							ancom | 
							 |-  ( ( G e. FriendGraph /\ G RegUSGraph K ) <-> ( G RegUSGraph K /\ G e. FriendGraph ) )  | 
						
						
							| 4 | 
							
								2 3
							 | 
							anbi12i | 
							 |-  ( ( ( V e. Fin /\ V =/= (/) ) /\ ( G e. FriendGraph /\ G RegUSGraph K ) ) <-> ( ( V =/= (/) /\ V e. Fin ) /\ ( G RegUSGraph K /\ G e. FriendGraph ) ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							biimpi | 
							 |-  ( ( ( V e. Fin /\ V =/= (/) ) /\ ( G e. FriendGraph /\ G RegUSGraph K ) ) -> ( ( V =/= (/) /\ V e. Fin ) /\ ( G RegUSGraph K /\ G e. FriendGraph ) ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							ancomd | 
							 |-  ( ( ( V e. Fin /\ V =/= (/) ) /\ ( G e. FriendGraph /\ G RegUSGraph K ) ) -> ( ( G RegUSGraph K /\ G e. FriendGraph ) /\ ( V =/= (/) /\ V e. Fin ) ) )  | 
						
						
							| 7 | 
							
								1
							 | 
							numclwwlk7lem | 
							 |-  ( ( ( G RegUSGraph K /\ G e. FriendGraph ) /\ ( V =/= (/) /\ V e. Fin ) ) -> K e. NN0 )  | 
						
						
							| 8 | 
							
								6 7
							 | 
							syl | 
							 |-  ( ( ( V e. Fin /\ V =/= (/) ) /\ ( G e. FriendGraph /\ G RegUSGraph K ) ) -> K e. NN0 )  | 
						
						
							| 9 | 
							
								
							 | 
							neanior | 
							 |-  ( ( K =/= 0 /\ K =/= 2 ) <-> -. ( K = 0 \/ K = 2 ) )  | 
						
						
							| 10 | 
							
								
							 | 
							nn0re | 
							 |-  ( K e. NN0 -> K e. RR )  | 
						
						
							| 11 | 
							
								
							 | 
							1re | 
							 |-  1 e. RR  | 
						
						
							| 12 | 
							
								
							 | 
							lenlt | 
							 |-  ( ( K e. RR /\ 1 e. RR ) -> ( K <_ 1 <-> -. 1 < K ) )  | 
						
						
							| 13 | 
							
								10 11 12
							 | 
							sylancl | 
							 |-  ( K e. NN0 -> ( K <_ 1 <-> -. 1 < K ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							adantl | 
							 |-  ( ( ( K =/= 0 /\ K =/= 2 ) /\ K e. NN0 ) -> ( K <_ 1 <-> -. 1 < K ) )  | 
						
						
							| 15 | 
							
								
							 | 
							elnnne0 | 
							 |-  ( K e. NN <-> ( K e. NN0 /\ K =/= 0 ) )  | 
						
						
							| 16 | 
							
								
							 | 
							nnle1eq1 | 
							 |-  ( K e. NN -> ( K <_ 1 <-> K = 1 ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							biimpd | 
							 |-  ( K e. NN -> ( K <_ 1 -> K = 1 ) )  | 
						
						
							| 18 | 
							
								15 17
							 | 
							sylbir | 
							 |-  ( ( K e. NN0 /\ K =/= 0 ) -> ( K <_ 1 -> K = 1 ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							a1d | 
							 |-  ( ( K e. NN0 /\ K =/= 0 ) -> ( K =/= 2 -> ( K <_ 1 -> K = 1 ) ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							expimpd | 
							 |-  ( K e. NN0 -> ( ( K =/= 0 /\ K =/= 2 ) -> ( K <_ 1 -> K = 1 ) ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							impcom | 
							 |-  ( ( ( K =/= 0 /\ K =/= 2 ) /\ K e. NN0 ) -> ( K <_ 1 -> K = 1 ) )  | 
						
						
							| 22 | 
							
								14 21
							 | 
							sylbird | 
							 |-  ( ( ( K =/= 0 /\ K =/= 2 ) /\ K e. NN0 ) -> ( -. 1 < K -> K = 1 ) )  | 
						
						
							| 23 | 
							
								1
							 | 
							fveq2i | 
							 |-  ( # ` V ) = ( # ` ( Vtx ` G ) )  | 
						
						
							| 24 | 
							
								23
							 | 
							eqeq1i | 
							 |-  ( ( # ` V ) = 1 <-> ( # ` ( Vtx ` G ) ) = 1 )  | 
						
						
							| 25 | 
							
								24
							 | 
							biimpi | 
							 |-  ( ( # ` V ) = 1 -> ( # ` ( Vtx ` G ) ) = 1 )  | 
						
						
							| 26 | 
							
								
							 | 
							simpr | 
							 |-  ( ( G e. FriendGraph /\ G RegUSGraph K ) -> G RegUSGraph K )  | 
						
						
							| 27 | 
							
								26
							 | 
							adantl | 
							 |-  ( ( ( V e. Fin /\ V =/= (/) ) /\ ( G e. FriendGraph /\ G RegUSGraph K ) ) -> G RegUSGraph K )  | 
						
						
							| 28 | 
							
								
							 | 
							rusgr1vtx | 
							 |-  ( ( ( # ` ( Vtx ` G ) ) = 1 /\ G RegUSGraph K ) -> K = 0 )  | 
						
						
							| 29 | 
							
								25 27 28
							 | 
							syl2an | 
							 |-  ( ( ( # ` V ) = 1 /\ ( ( V e. Fin /\ V =/= (/) ) /\ ( G e. FriendGraph /\ G RegUSGraph K ) ) ) -> K = 0 )  | 
						
						
							| 30 | 
							
								29
							 | 
							orcd | 
							 |-  ( ( ( # ` V ) = 1 /\ ( ( V e. Fin /\ V =/= (/) ) /\ ( G e. FriendGraph /\ G RegUSGraph K ) ) ) -> ( K = 0 \/ K = 2 ) )  | 
						
						
							| 31 | 
							
								30
							 | 
							ex | 
							 |-  ( ( # ` V ) = 1 -> ( ( ( V e. Fin /\ V =/= (/) ) /\ ( G e. FriendGraph /\ G RegUSGraph K ) ) -> ( K = 0 \/ K = 2 ) ) )  | 
						
						
							| 32 | 
							
								31
							 | 
							a1d | 
							 |-  ( ( # ` V ) = 1 -> ( K = 1 -> ( ( ( V e. Fin /\ V =/= (/) ) /\ ( G e. FriendGraph /\ G RegUSGraph K ) ) -> ( K = 0 \/ K = 2 ) ) ) )  | 
						
						
							| 33 | 
							
								
							 | 
							eqid | 
							 |-  ( VtxDeg ` G ) = ( VtxDeg ` G )  | 
						
						
							| 34 | 
							
								1 33
							 | 
							rusgrprop0 | 
							 |-  ( G RegUSGraph K -> ( G e. USGraph /\ K e. NN0* /\ A. v e. V ( ( VtxDeg ` G ) ` v ) = K ) )  | 
						
						
							| 35 | 
							
								
							 | 
							simp2 | 
							 |-  ( ( -. ( # ` V ) = 1 /\ G e. FriendGraph /\ ( V e. Fin /\ V =/= (/) ) ) -> G e. FriendGraph )  | 
						
						
							| 36 | 
							
								
							 | 
							hashnncl | 
							 |-  ( V e. Fin -> ( ( # ` V ) e. NN <-> V =/= (/) ) )  | 
						
						
							| 37 | 
							
								
							 | 
							df-ne | 
							 |-  ( ( # ` V ) =/= 1 <-> -. ( # ` V ) = 1 )  | 
						
						
							| 38 | 
							
								
							 | 
							nngt1ne1 | 
							 |-  ( ( # ` V ) e. NN -> ( 1 < ( # ` V ) <-> ( # ` V ) =/= 1 ) )  | 
						
						
							| 39 | 
							
								38
							 | 
							biimprd | 
							 |-  ( ( # ` V ) e. NN -> ( ( # ` V ) =/= 1 -> 1 < ( # ` V ) ) )  | 
						
						
							| 40 | 
							
								37 39
							 | 
							biimtrrid | 
							 |-  ( ( # ` V ) e. NN -> ( -. ( # ` V ) = 1 -> 1 < ( # ` V ) ) )  | 
						
						
							| 41 | 
							
								36 40
							 | 
							biimtrrdi | 
							 |-  ( V e. Fin -> ( V =/= (/) -> ( -. ( # ` V ) = 1 -> 1 < ( # ` V ) ) ) )  | 
						
						
							| 42 | 
							
								41
							 | 
							imp | 
							 |-  ( ( V e. Fin /\ V =/= (/) ) -> ( -. ( # ` V ) = 1 -> 1 < ( # ` V ) ) )  | 
						
						
							| 43 | 
							
								42
							 | 
							impcom | 
							 |-  ( ( -. ( # ` V ) = 1 /\ ( V e. Fin /\ V =/= (/) ) ) -> 1 < ( # ` V ) )  | 
						
						
							| 44 | 
							
								1
							 | 
							vdgn1frgrv3 | 
							 |-  ( ( G e. FriendGraph /\ 1 < ( # ` V ) ) -> A. v e. V ( ( VtxDeg ` G ) ` v ) =/= 1 )  | 
						
						
							| 45 | 
							
								35 43 44
							 | 
							3imp3i2an | 
							 |-  ( ( -. ( # ` V ) = 1 /\ G e. FriendGraph /\ ( V e. Fin /\ V =/= (/) ) ) -> A. v e. V ( ( VtxDeg ` G ) ` v ) =/= 1 )  | 
						
						
							| 46 | 
							
								
							 | 
							r19.26 | 
							 |-  ( A. v e. V ( ( ( VtxDeg ` G ) ` v ) =/= 1 /\ ( ( VtxDeg ` G ) ` v ) = K ) <-> ( A. v e. V ( ( VtxDeg ` G ) ` v ) =/= 1 /\ A. v e. V ( ( VtxDeg ` G ) ` v ) = K ) )  | 
						
						
							| 47 | 
							
								
							 | 
							r19.2z | 
							 |-  ( ( V =/= (/) /\ A. v e. V ( ( ( VtxDeg ` G ) ` v ) =/= 1 /\ ( ( VtxDeg ` G ) ` v ) = K ) ) -> E. v e. V ( ( ( VtxDeg ` G ) ` v ) =/= 1 /\ ( ( VtxDeg ` G ) ` v ) = K ) )  | 
						
						
							| 48 | 
							
								
							 | 
							neeq1 | 
							 |-  ( ( ( VtxDeg ` G ) ` v ) = K -> ( ( ( VtxDeg ` G ) ` v ) =/= 1 <-> K =/= 1 ) )  | 
						
						
							| 49 | 
							
								48
							 | 
							biimpd | 
							 |-  ( ( ( VtxDeg ` G ) ` v ) = K -> ( ( ( VtxDeg ` G ) ` v ) =/= 1 -> K =/= 1 ) )  | 
						
						
							| 50 | 
							
								49
							 | 
							impcom | 
							 |-  ( ( ( ( VtxDeg ` G ) ` v ) =/= 1 /\ ( ( VtxDeg ` G ) ` v ) = K ) -> K =/= 1 )  | 
						
						
							| 51 | 
							
								
							 | 
							eqneqall | 
							 |-  ( K = 1 -> ( K =/= 1 -> ( K = 0 \/ K = 2 ) ) )  | 
						
						
							| 52 | 
							
								51
							 | 
							com12 | 
							 |-  ( K =/= 1 -> ( K = 1 -> ( K = 0 \/ K = 2 ) ) )  | 
						
						
							| 53 | 
							
								50 52
							 | 
							syl | 
							 |-  ( ( ( ( VtxDeg ` G ) ` v ) =/= 1 /\ ( ( VtxDeg ` G ) ` v ) = K ) -> ( K = 1 -> ( K = 0 \/ K = 2 ) ) )  | 
						
						
							| 54 | 
							
								53
							 | 
							rexlimivw | 
							 |-  ( E. v e. V ( ( ( VtxDeg ` G ) ` v ) =/= 1 /\ ( ( VtxDeg ` G ) ` v ) = K ) -> ( K = 1 -> ( K = 0 \/ K = 2 ) ) )  | 
						
						
							| 55 | 
							
								47 54
							 | 
							syl | 
							 |-  ( ( V =/= (/) /\ A. v e. V ( ( ( VtxDeg ` G ) ` v ) =/= 1 /\ ( ( VtxDeg ` G ) ` v ) = K ) ) -> ( K = 1 -> ( K = 0 \/ K = 2 ) ) )  | 
						
						
							| 56 | 
							
								55
							 | 
							ex | 
							 |-  ( V =/= (/) -> ( A. v e. V ( ( ( VtxDeg ` G ) ` v ) =/= 1 /\ ( ( VtxDeg ` G ) ` v ) = K ) -> ( K = 1 -> ( K = 0 \/ K = 2 ) ) ) )  | 
						
						
							| 57 | 
							
								46 56
							 | 
							biimtrrid | 
							 |-  ( V =/= (/) -> ( ( A. v e. V ( ( VtxDeg ` G ) ` v ) =/= 1 /\ A. v e. V ( ( VtxDeg ` G ) ` v ) = K ) -> ( K = 1 -> ( K = 0 \/ K = 2 ) ) ) )  | 
						
						
							| 58 | 
							
								57
							 | 
							expd | 
							 |-  ( V =/= (/) -> ( A. v e. V ( ( VtxDeg ` G ) ` v ) =/= 1 -> ( A. v e. V ( ( VtxDeg ` G ) ` v ) = K -> ( K = 1 -> ( K = 0 \/ K = 2 ) ) ) ) )  | 
						
						
							| 59 | 
							
								58
							 | 
							com34 | 
							 |-  ( V =/= (/) -> ( A. v e. V ( ( VtxDeg ` G ) ` v ) =/= 1 -> ( K = 1 -> ( A. v e. V ( ( VtxDeg ` G ) ` v ) = K -> ( K = 0 \/ K = 2 ) ) ) ) )  | 
						
						
							| 60 | 
							
								59
							 | 
							adantl | 
							 |-  ( ( V e. Fin /\ V =/= (/) ) -> ( A. v e. V ( ( VtxDeg ` G ) ` v ) =/= 1 -> ( K = 1 -> ( A. v e. V ( ( VtxDeg ` G ) ` v ) = K -> ( K = 0 \/ K = 2 ) ) ) ) )  | 
						
						
							| 61 | 
							
								60
							 | 
							3ad2ant3 | 
							 |-  ( ( -. ( # ` V ) = 1 /\ G e. FriendGraph /\ ( V e. Fin /\ V =/= (/) ) ) -> ( A. v e. V ( ( VtxDeg ` G ) ` v ) =/= 1 -> ( K = 1 -> ( A. v e. V ( ( VtxDeg ` G ) ` v ) = K -> ( K = 0 \/ K = 2 ) ) ) ) )  | 
						
						
							| 62 | 
							
								45 61
							 | 
							mpd | 
							 |-  ( ( -. ( # ` V ) = 1 /\ G e. FriendGraph /\ ( V e. Fin /\ V =/= (/) ) ) -> ( K = 1 -> ( A. v e. V ( ( VtxDeg ` G ) ` v ) = K -> ( K = 0 \/ K = 2 ) ) ) )  | 
						
						
							| 63 | 
							
								62
							 | 
							3exp | 
							 |-  ( -. ( # ` V ) = 1 -> ( G e. FriendGraph -> ( ( V e. Fin /\ V =/= (/) ) -> ( K = 1 -> ( A. v e. V ( ( VtxDeg ` G ) ` v ) = K -> ( K = 0 \/ K = 2 ) ) ) ) ) )  | 
						
						
							| 64 | 
							
								63
							 | 
							com15 | 
							 |-  ( A. v e. V ( ( VtxDeg ` G ) ` v ) = K -> ( G e. FriendGraph -> ( ( V e. Fin /\ V =/= (/) ) -> ( K = 1 -> ( -. ( # ` V ) = 1 -> ( K = 0 \/ K = 2 ) ) ) ) ) )  | 
						
						
							| 65 | 
							
								64
							 | 
							3ad2ant3 | 
							 |-  ( ( G e. USGraph /\ K e. NN0* /\ A. v e. V ( ( VtxDeg ` G ) ` v ) = K ) -> ( G e. FriendGraph -> ( ( V e. Fin /\ V =/= (/) ) -> ( K = 1 -> ( -. ( # ` V ) = 1 -> ( K = 0 \/ K = 2 ) ) ) ) ) )  | 
						
						
							| 66 | 
							
								34 65
							 | 
							syl | 
							 |-  ( G RegUSGraph K -> ( G e. FriendGraph -> ( ( V e. Fin /\ V =/= (/) ) -> ( K = 1 -> ( -. ( # ` V ) = 1 -> ( K = 0 \/ K = 2 ) ) ) ) ) )  | 
						
						
							| 67 | 
							
								66
							 | 
							impcom | 
							 |-  ( ( G e. FriendGraph /\ G RegUSGraph K ) -> ( ( V e. Fin /\ V =/= (/) ) -> ( K = 1 -> ( -. ( # ` V ) = 1 -> ( K = 0 \/ K = 2 ) ) ) ) )  | 
						
						
							| 68 | 
							
								67
							 | 
							impcom | 
							 |-  ( ( ( V e. Fin /\ V =/= (/) ) /\ ( G e. FriendGraph /\ G RegUSGraph K ) ) -> ( K = 1 -> ( -. ( # ` V ) = 1 -> ( K = 0 \/ K = 2 ) ) ) )  | 
						
						
							| 69 | 
							
								68
							 | 
							com13 | 
							 |-  ( -. ( # ` V ) = 1 -> ( K = 1 -> ( ( ( V e. Fin /\ V =/= (/) ) /\ ( G e. FriendGraph /\ G RegUSGraph K ) ) -> ( K = 0 \/ K = 2 ) ) ) )  | 
						
						
							| 70 | 
							
								32 69
							 | 
							pm2.61i | 
							 |-  ( K = 1 -> ( ( ( V e. Fin /\ V =/= (/) ) /\ ( G e. FriendGraph /\ G RegUSGraph K ) ) -> ( K = 0 \/ K = 2 ) ) )  | 
						
						
							| 71 | 
							
								22 70
							 | 
							syl6 | 
							 |-  ( ( ( K =/= 0 /\ K =/= 2 ) /\ K e. NN0 ) -> ( -. 1 < K -> ( ( ( V e. Fin /\ V =/= (/) ) /\ ( G e. FriendGraph /\ G RegUSGraph K ) ) -> ( K = 0 \/ K = 2 ) ) ) )  | 
						
						
							| 72 | 
							
								71
							 | 
							ex | 
							 |-  ( ( K =/= 0 /\ K =/= 2 ) -> ( K e. NN0 -> ( -. 1 < K -> ( ( ( V e. Fin /\ V =/= (/) ) /\ ( G e. FriendGraph /\ G RegUSGraph K ) ) -> ( K = 0 \/ K = 2 ) ) ) ) )  | 
						
						
							| 73 | 
							
								72
							 | 
							com23 | 
							 |-  ( ( K =/= 0 /\ K =/= 2 ) -> ( -. 1 < K -> ( K e. NN0 -> ( ( ( V e. Fin /\ V =/= (/) ) /\ ( G e. FriendGraph /\ G RegUSGraph K ) ) -> ( K = 0 \/ K = 2 ) ) ) ) )  | 
						
						
							| 74 | 
							
								9 73
							 | 
							sylbir | 
							 |-  ( -. ( K = 0 \/ K = 2 ) -> ( -. 1 < K -> ( K e. NN0 -> ( ( ( V e. Fin /\ V =/= (/) ) /\ ( G e. FriendGraph /\ G RegUSGraph K ) ) -> ( K = 0 \/ K = 2 ) ) ) ) )  | 
						
						
							| 75 | 
							
								74
							 | 
							impcom | 
							 |-  ( ( -. 1 < K /\ -. ( K = 0 \/ K = 2 ) ) -> ( K e. NN0 -> ( ( ( V e. Fin /\ V =/= (/) ) /\ ( G e. FriendGraph /\ G RegUSGraph K ) ) -> ( K = 0 \/ K = 2 ) ) ) )  | 
						
						
							| 76 | 
							
								75
							 | 
							com13 | 
							 |-  ( ( ( V e. Fin /\ V =/= (/) ) /\ ( G e. FriendGraph /\ G RegUSGraph K ) ) -> ( K e. NN0 -> ( ( -. 1 < K /\ -. ( K = 0 \/ K = 2 ) ) -> ( K = 0 \/ K = 2 ) ) ) )  | 
						
						
							| 77 | 
							
								8 76
							 | 
							mpd | 
							 |-  ( ( ( V e. Fin /\ V =/= (/) ) /\ ( G e. FriendGraph /\ G RegUSGraph K ) ) -> ( ( -. 1 < K /\ -. ( K = 0 \/ K = 2 ) ) -> ( K = 0 \/ K = 2 ) ) )  | 
						
						
							| 78 | 
							
								77
							 | 
							com12 | 
							 |-  ( ( -. 1 < K /\ -. ( K = 0 \/ K = 2 ) ) -> ( ( ( V e. Fin /\ V =/= (/) ) /\ ( G e. FriendGraph /\ G RegUSGraph K ) ) -> ( K = 0 \/ K = 2 ) ) )  | 
						
						
							| 79 | 
							
								78
							 | 
							exp4b | 
							 |-  ( -. 1 < K -> ( -. ( K = 0 \/ K = 2 ) -> ( ( V e. Fin /\ V =/= (/) ) -> ( ( G e. FriendGraph /\ G RegUSGraph K ) -> ( K = 0 \/ K = 2 ) ) ) ) )  | 
						
						
							| 80 | 
							
								
							 | 
							simprl | 
							 |-  ( ( ( 1 < K /\ ( V e. Fin /\ V =/= (/) ) ) /\ ( G e. FriendGraph /\ G RegUSGraph K ) ) -> G e. FriendGraph )  | 
						
						
							| 81 | 
							
								
							 | 
							simpl | 
							 |-  ( ( V e. Fin /\ V =/= (/) ) -> V e. Fin )  | 
						
						
							| 82 | 
							
								81
							 | 
							ad2antlr | 
							 |-  ( ( ( 1 < K /\ ( V e. Fin /\ V =/= (/) ) ) /\ ( G e. FriendGraph /\ G RegUSGraph K ) ) -> V e. Fin )  | 
						
						
							| 83 | 
							
								
							 | 
							simpr | 
							 |-  ( ( V e. Fin /\ V =/= (/) ) -> V =/= (/) )  | 
						
						
							| 84 | 
							
								83
							 | 
							ad2antlr | 
							 |-  ( ( ( 1 < K /\ ( V e. Fin /\ V =/= (/) ) ) /\ ( G e. FriendGraph /\ G RegUSGraph K ) ) -> V =/= (/) )  | 
						
						
							| 85 | 
							
								
							 | 
							simpl | 
							 |-  ( ( 1 < K /\ ( V e. Fin /\ V =/= (/) ) ) -> 1 < K )  | 
						
						
							| 86 | 
							
								85 26
							 | 
							anim12ci | 
							 |-  ( ( ( 1 < K /\ ( V e. Fin /\ V =/= (/) ) ) /\ ( G e. FriendGraph /\ G RegUSGraph K ) ) -> ( G RegUSGraph K /\ 1 < K ) )  | 
						
						
							| 87 | 
							
								1
							 | 
							frgrreggt1 | 
							 |-  ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) -> ( ( G RegUSGraph K /\ 1 < K ) -> K = 2 ) )  | 
						
						
							| 88 | 
							
								87
							 | 
							imp | 
							 |-  ( ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) /\ ( G RegUSGraph K /\ 1 < K ) ) -> K = 2 )  | 
						
						
							| 89 | 
							
								80 82 84 86 88
							 | 
							syl31anc | 
							 |-  ( ( ( 1 < K /\ ( V e. Fin /\ V =/= (/) ) ) /\ ( G e. FriendGraph /\ G RegUSGraph K ) ) -> K = 2 )  | 
						
						
							| 90 | 
							
								89
							 | 
							olcd | 
							 |-  ( ( ( 1 < K /\ ( V e. Fin /\ V =/= (/) ) ) /\ ( G e. FriendGraph /\ G RegUSGraph K ) ) -> ( K = 0 \/ K = 2 ) )  | 
						
						
							| 91 | 
							
								90
							 | 
							exp31 | 
							 |-  ( 1 < K -> ( ( V e. Fin /\ V =/= (/) ) -> ( ( G e. FriendGraph /\ G RegUSGraph K ) -> ( K = 0 \/ K = 2 ) ) ) )  | 
						
						
							| 92 | 
							
								
							 | 
							2a1 | 
							 |-  ( ( K = 0 \/ K = 2 ) -> ( ( V e. Fin /\ V =/= (/) ) -> ( ( G e. FriendGraph /\ G RegUSGraph K ) -> ( K = 0 \/ K = 2 ) ) ) )  | 
						
						
							| 93 | 
							
								79 91 92
							 | 
							pm2.61ii | 
							 |-  ( ( V e. Fin /\ V =/= (/) ) -> ( ( G e. FriendGraph /\ G RegUSGraph K ) -> ( K = 0 \/ K = 2 ) ) )  |