| Step |
Hyp |
Ref |
Expression |
| 1 |
|
frgrreggt1.v |
|- V = ( Vtx ` G ) |
| 2 |
|
simp1 |
|- ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) -> G e. FriendGraph ) |
| 3 |
2
|
anim1ci |
|- ( ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) /\ G RegUSGraph K ) -> ( G RegUSGraph K /\ G e. FriendGraph ) ) |
| 4 |
|
simp3 |
|- ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) -> V =/= (/) ) |
| 5 |
|
simp2 |
|- ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) -> V e. Fin ) |
| 6 |
4 5
|
jca |
|- ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) -> ( V =/= (/) /\ V e. Fin ) ) |
| 7 |
6
|
adantr |
|- ( ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) /\ G RegUSGraph K ) -> ( V =/= (/) /\ V e. Fin ) ) |
| 8 |
1
|
numclwwlk7lem |
|- ( ( ( G RegUSGraph K /\ G e. FriendGraph ) /\ ( V =/= (/) /\ V e. Fin ) ) -> K e. NN0 ) |
| 9 |
3 7 8
|
syl2anc |
|- ( ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) /\ G RegUSGraph K ) -> K e. NN0 ) |
| 10 |
|
2z |
|- 2 e. ZZ |
| 11 |
10
|
a1i |
|- ( ( K e. NN0 /\ 2 < K ) -> 2 e. ZZ ) |
| 12 |
|
nn0z |
|- ( K e. NN0 -> K e. ZZ ) |
| 13 |
12
|
adantr |
|- ( ( K e. NN0 /\ 2 < K ) -> K e. ZZ ) |
| 14 |
|
peano2zm |
|- ( K e. ZZ -> ( K - 1 ) e. ZZ ) |
| 15 |
13 14
|
syl |
|- ( ( K e. NN0 /\ 2 < K ) -> ( K - 1 ) e. ZZ ) |
| 16 |
|
zltlem1 |
|- ( ( 2 e. ZZ /\ K e. ZZ ) -> ( 2 < K <-> 2 <_ ( K - 1 ) ) ) |
| 17 |
10 12 16
|
sylancr |
|- ( K e. NN0 -> ( 2 < K <-> 2 <_ ( K - 1 ) ) ) |
| 18 |
17
|
biimpa |
|- ( ( K e. NN0 /\ 2 < K ) -> 2 <_ ( K - 1 ) ) |
| 19 |
|
eluz2 |
|- ( ( K - 1 ) e. ( ZZ>= ` 2 ) <-> ( 2 e. ZZ /\ ( K - 1 ) e. ZZ /\ 2 <_ ( K - 1 ) ) ) |
| 20 |
11 15 18 19
|
syl3anbrc |
|- ( ( K e. NN0 /\ 2 < K ) -> ( K - 1 ) e. ( ZZ>= ` 2 ) ) |
| 21 |
|
exprmfct |
|- ( ( K - 1 ) e. ( ZZ>= ` 2 ) -> E. p e. Prime p || ( K - 1 ) ) |
| 22 |
20 21
|
syl |
|- ( ( K e. NN0 /\ 2 < K ) -> E. p e. Prime p || ( K - 1 ) ) |
| 23 |
5
|
anim1ci |
|- ( ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) /\ G RegUSGraph K ) -> ( G RegUSGraph K /\ V e. Fin ) ) |
| 24 |
1
|
finrusgrfusgr |
|- ( ( G RegUSGraph K /\ V e. Fin ) -> G e. FinUSGraph ) |
| 25 |
23 24
|
syl |
|- ( ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) /\ G RegUSGraph K ) -> G e. FinUSGraph ) |
| 26 |
25
|
3ad2ant3 |
|- ( ( ( p e. Prime /\ p || ( K - 1 ) ) /\ ( K e. NN0 /\ 2 < K ) /\ ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) /\ G RegUSGraph K ) ) -> G e. FinUSGraph ) |
| 27 |
|
simp1l |
|- ( ( ( p e. Prime /\ p || ( K - 1 ) ) /\ ( K e. NN0 /\ 2 < K ) /\ ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) /\ G RegUSGraph K ) ) -> p e. Prime ) |
| 28 |
|
numclwwlk8 |
|- ( ( G e. FinUSGraph /\ p e. Prime ) -> ( ( # ` ( p ClWWalksN G ) ) mod p ) = 0 ) |
| 29 |
26 27 28
|
syl2anc |
|- ( ( ( p e. Prime /\ p || ( K - 1 ) ) /\ ( K e. NN0 /\ 2 < K ) /\ ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) /\ G RegUSGraph K ) ) -> ( ( # ` ( p ClWWalksN G ) ) mod p ) = 0 ) |
| 30 |
3
|
3ad2ant3 |
|- ( ( ( p e. Prime /\ p || ( K - 1 ) ) /\ ( K e. NN0 /\ 2 < K ) /\ ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) /\ G RegUSGraph K ) ) -> ( G RegUSGraph K /\ G e. FriendGraph ) ) |
| 31 |
|
pm3.22 |
|- ( ( V e. Fin /\ V =/= (/) ) -> ( V =/= (/) /\ V e. Fin ) ) |
| 32 |
31
|
3adant1 |
|- ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) -> ( V =/= (/) /\ V e. Fin ) ) |
| 33 |
32
|
adantr |
|- ( ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) /\ G RegUSGraph K ) -> ( V =/= (/) /\ V e. Fin ) ) |
| 34 |
33
|
3ad2ant3 |
|- ( ( ( p e. Prime /\ p || ( K - 1 ) ) /\ ( K e. NN0 /\ 2 < K ) /\ ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) /\ G RegUSGraph K ) ) -> ( V =/= (/) /\ V e. Fin ) ) |
| 35 |
|
simp1 |
|- ( ( ( p e. Prime /\ p || ( K - 1 ) ) /\ ( K e. NN0 /\ 2 < K ) /\ ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) /\ G RegUSGraph K ) ) -> ( p e. Prime /\ p || ( K - 1 ) ) ) |
| 36 |
1
|
numclwwlk7 |
|- ( ( ( G RegUSGraph K /\ G e. FriendGraph ) /\ ( V =/= (/) /\ V e. Fin ) /\ ( p e. Prime /\ p || ( K - 1 ) ) ) -> ( ( # ` ( p ClWWalksN G ) ) mod p ) = 1 ) |
| 37 |
30 34 35 36
|
syl3anc |
|- ( ( ( p e. Prime /\ p || ( K - 1 ) ) /\ ( K e. NN0 /\ 2 < K ) /\ ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) /\ G RegUSGraph K ) ) -> ( ( # ` ( p ClWWalksN G ) ) mod p ) = 1 ) |
| 38 |
|
eqeq1 |
|- ( ( ( # ` ( p ClWWalksN G ) ) mod p ) = 0 -> ( ( ( # ` ( p ClWWalksN G ) ) mod p ) = 1 <-> 0 = 1 ) ) |
| 39 |
|
ax-1ne0 |
|- 1 =/= 0 |
| 40 |
39
|
nesymi |
|- -. 0 = 1 |
| 41 |
40
|
pm2.21i |
|- ( 0 = 1 -> K = 2 ) |
| 42 |
38 41
|
biimtrdi |
|- ( ( ( # ` ( p ClWWalksN G ) ) mod p ) = 0 -> ( ( ( # ` ( p ClWWalksN G ) ) mod p ) = 1 -> K = 2 ) ) |
| 43 |
29 37 42
|
sylc |
|- ( ( ( p e. Prime /\ p || ( K - 1 ) ) /\ ( K e. NN0 /\ 2 < K ) /\ ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) /\ G RegUSGraph K ) ) -> K = 2 ) |
| 44 |
43
|
a1d |
|- ( ( ( p e. Prime /\ p || ( K - 1 ) ) /\ ( K e. NN0 /\ 2 < K ) /\ ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) /\ G RegUSGraph K ) ) -> ( 1 < K -> K = 2 ) ) |
| 45 |
44
|
3exp |
|- ( ( p e. Prime /\ p || ( K - 1 ) ) -> ( ( K e. NN0 /\ 2 < K ) -> ( ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) /\ G RegUSGraph K ) -> ( 1 < K -> K = 2 ) ) ) ) |
| 46 |
45
|
rexlimiva |
|- ( E. p e. Prime p || ( K - 1 ) -> ( ( K e. NN0 /\ 2 < K ) -> ( ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) /\ G RegUSGraph K ) -> ( 1 < K -> K = 2 ) ) ) ) |
| 47 |
22 46
|
mpcom |
|- ( ( K e. NN0 /\ 2 < K ) -> ( ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) /\ G RegUSGraph K ) -> ( 1 < K -> K = 2 ) ) ) |
| 48 |
47
|
expcom |
|- ( 2 < K -> ( K e. NN0 -> ( ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) /\ G RegUSGraph K ) -> ( 1 < K -> K = 2 ) ) ) ) |
| 49 |
48
|
com23 |
|- ( 2 < K -> ( ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) /\ G RegUSGraph K ) -> ( K e. NN0 -> ( 1 < K -> K = 2 ) ) ) ) |
| 50 |
|
1red |
|- ( K e. NN0 -> 1 e. RR ) |
| 51 |
|
nn0re |
|- ( K e. NN0 -> K e. RR ) |
| 52 |
50 51
|
ltnled |
|- ( K e. NN0 -> ( 1 < K <-> -. K <_ 1 ) ) |
| 53 |
|
1e2m1 |
|- 1 = ( 2 - 1 ) |
| 54 |
53
|
a1i |
|- ( K e. NN0 -> 1 = ( 2 - 1 ) ) |
| 55 |
54
|
breq2d |
|- ( K e. NN0 -> ( K <_ 1 <-> K <_ ( 2 - 1 ) ) ) |
| 56 |
55
|
notbid |
|- ( K e. NN0 -> ( -. K <_ 1 <-> -. K <_ ( 2 - 1 ) ) ) |
| 57 |
|
zltlem1 |
|- ( ( K e. ZZ /\ 2 e. ZZ ) -> ( K < 2 <-> K <_ ( 2 - 1 ) ) ) |
| 58 |
12 10 57
|
sylancl |
|- ( K e. NN0 -> ( K < 2 <-> K <_ ( 2 - 1 ) ) ) |
| 59 |
58
|
bicomd |
|- ( K e. NN0 -> ( K <_ ( 2 - 1 ) <-> K < 2 ) ) |
| 60 |
59
|
notbid |
|- ( K e. NN0 -> ( -. K <_ ( 2 - 1 ) <-> -. K < 2 ) ) |
| 61 |
52 56 60
|
3bitrd |
|- ( K e. NN0 -> ( 1 < K <-> -. K < 2 ) ) |
| 62 |
|
2re |
|- 2 e. RR |
| 63 |
|
lttri3 |
|- ( ( K e. RR /\ 2 e. RR ) -> ( K = 2 <-> ( -. K < 2 /\ -. 2 < K ) ) ) |
| 64 |
63
|
biimprd |
|- ( ( K e. RR /\ 2 e. RR ) -> ( ( -. K < 2 /\ -. 2 < K ) -> K = 2 ) ) |
| 65 |
51 62 64
|
sylancl |
|- ( K e. NN0 -> ( ( -. K < 2 /\ -. 2 < K ) -> K = 2 ) ) |
| 66 |
65
|
expd |
|- ( K e. NN0 -> ( -. K < 2 -> ( -. 2 < K -> K = 2 ) ) ) |
| 67 |
61 66
|
sylbid |
|- ( K e. NN0 -> ( 1 < K -> ( -. 2 < K -> K = 2 ) ) ) |
| 68 |
67
|
com3r |
|- ( -. 2 < K -> ( K e. NN0 -> ( 1 < K -> K = 2 ) ) ) |
| 69 |
68
|
a1d |
|- ( -. 2 < K -> ( ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) /\ G RegUSGraph K ) -> ( K e. NN0 -> ( 1 < K -> K = 2 ) ) ) ) |
| 70 |
49 69
|
pm2.61i |
|- ( ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) /\ G RegUSGraph K ) -> ( K e. NN0 -> ( 1 < K -> K = 2 ) ) ) |
| 71 |
9 70
|
mpd |
|- ( ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) /\ G RegUSGraph K ) -> ( 1 < K -> K = 2 ) ) |
| 72 |
71
|
expimpd |
|- ( ( G e. FriendGraph /\ V e. Fin /\ V =/= (/) ) -> ( ( G RegUSGraph K /\ 1 < K ) -> K = 2 ) ) |