Step |
Hyp |
Ref |
Expression |
1 |
|
frgrreggt1.v |
|- V = ( Vtx ` G ) |
2 |
|
hashcl |
|- ( V e. Fin -> ( # ` V ) e. NN0 ) |
3 |
|
ax-1 |
|- ( ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) -> ( ( ( ( # ` V ) e. NN0 /\ V e. Fin /\ G e. FriendGraph ) /\ G RegUSGraph K ) -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) |
4 |
|
3ioran |
|- ( -. ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) <-> ( -. ( # ` V ) = 0 /\ -. ( # ` V ) = 1 /\ -. ( # ` V ) = 3 ) ) |
5 |
|
df-ne |
|- ( ( # ` V ) =/= 0 <-> -. ( # ` V ) = 0 ) |
6 |
|
hasheq0 |
|- ( V e. Fin -> ( ( # ` V ) = 0 <-> V = (/) ) ) |
7 |
6
|
necon3bid |
|- ( V e. Fin -> ( ( # ` V ) =/= 0 <-> V =/= (/) ) ) |
8 |
7
|
biimpa |
|- ( ( V e. Fin /\ ( # ` V ) =/= 0 ) -> V =/= (/) ) |
9 |
|
elnnne0 |
|- ( ( # ` V ) e. NN <-> ( ( # ` V ) e. NN0 /\ ( # ` V ) =/= 0 ) ) |
10 |
|
df-ne |
|- ( ( # ` V ) =/= 1 <-> -. ( # ` V ) = 1 ) |
11 |
|
eluz2b3 |
|- ( ( # ` V ) e. ( ZZ>= ` 2 ) <-> ( ( # ` V ) e. NN /\ ( # ` V ) =/= 1 ) ) |
12 |
|
hash2prde |
|- ( ( V e. Fin /\ ( # ` V ) = 2 ) -> E. a E. b ( a =/= b /\ V = { a , b } ) ) |
13 |
|
vex |
|- a e. _V |
14 |
13
|
a1i |
|- ( a =/= b -> a e. _V ) |
15 |
|
vex |
|- b e. _V |
16 |
15
|
a1i |
|- ( a =/= b -> b e. _V ) |
17 |
|
id |
|- ( a =/= b -> a =/= b ) |
18 |
14 16 17
|
3jca |
|- ( a =/= b -> ( a e. _V /\ b e. _V /\ a =/= b ) ) |
19 |
1
|
eqeq1i |
|- ( V = { a , b } <-> ( Vtx ` G ) = { a , b } ) |
20 |
19
|
biimpi |
|- ( V = { a , b } -> ( Vtx ` G ) = { a , b } ) |
21 |
|
nfrgr2v |
|- ( ( ( a e. _V /\ b e. _V /\ a =/= b ) /\ ( Vtx ` G ) = { a , b } ) -> G e/ FriendGraph ) |
22 |
18 20 21
|
syl2an |
|- ( ( a =/= b /\ V = { a , b } ) -> G e/ FriendGraph ) |
23 |
|
df-nel |
|- ( G e/ FriendGraph <-> -. G e. FriendGraph ) |
24 |
22 23
|
sylib |
|- ( ( a =/= b /\ V = { a , b } ) -> -. G e. FriendGraph ) |
25 |
24
|
pm2.21d |
|- ( ( a =/= b /\ V = { a , b } ) -> ( G e. FriendGraph -> ( V =/= (/) -> ( -. ( # ` V ) = 3 -> ( G RegUSGraph K -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) ) ) |
26 |
25
|
com23 |
|- ( ( a =/= b /\ V = { a , b } ) -> ( V =/= (/) -> ( G e. FriendGraph -> ( -. ( # ` V ) = 3 -> ( G RegUSGraph K -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) ) ) |
27 |
26
|
exlimivv |
|- ( E. a E. b ( a =/= b /\ V = { a , b } ) -> ( V =/= (/) -> ( G e. FriendGraph -> ( -. ( # ` V ) = 3 -> ( G RegUSGraph K -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) ) ) |
28 |
12 27
|
syl |
|- ( ( V e. Fin /\ ( # ` V ) = 2 ) -> ( V =/= (/) -> ( G e. FriendGraph -> ( -. ( # ` V ) = 3 -> ( G RegUSGraph K -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) ) ) |
29 |
28
|
ex |
|- ( V e. Fin -> ( ( # ` V ) = 2 -> ( V =/= (/) -> ( G e. FriendGraph -> ( -. ( # ` V ) = 3 -> ( G RegUSGraph K -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) ) ) ) |
30 |
29
|
com23 |
|- ( V e. Fin -> ( V =/= (/) -> ( ( # ` V ) = 2 -> ( G e. FriendGraph -> ( -. ( # ` V ) = 3 -> ( G RegUSGraph K -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) ) ) ) |
31 |
30
|
com14 |
|- ( G e. FriendGraph -> ( V =/= (/) -> ( ( # ` V ) = 2 -> ( V e. Fin -> ( -. ( # ` V ) = 3 -> ( G RegUSGraph K -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) ) ) ) |
32 |
31
|
a1i |
|- ( ( # ` V ) e. ( ZZ>= ` 2 ) -> ( G e. FriendGraph -> ( V =/= (/) -> ( ( # ` V ) = 2 -> ( V e. Fin -> ( -. ( # ` V ) = 3 -> ( G RegUSGraph K -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) ) ) ) ) |
33 |
32
|
3imp |
|- ( ( ( # ` V ) e. ( ZZ>= ` 2 ) /\ G e. FriendGraph /\ V =/= (/) ) -> ( ( # ` V ) = 2 -> ( V e. Fin -> ( -. ( # ` V ) = 3 -> ( G RegUSGraph K -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) ) ) |
34 |
33
|
com12 |
|- ( ( # ` V ) = 2 -> ( ( ( # ` V ) e. ( ZZ>= ` 2 ) /\ G e. FriendGraph /\ V =/= (/) ) -> ( V e. Fin -> ( -. ( # ` V ) = 3 -> ( G RegUSGraph K -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) ) ) |
35 |
|
eqid |
|- ( VtxDeg ` G ) = ( VtxDeg ` G ) |
36 |
1 35
|
rusgrprop0 |
|- ( G RegUSGraph K -> ( G e. USGraph /\ K e. NN0* /\ A. v e. V ( ( VtxDeg ` G ) ` v ) = K ) ) |
37 |
|
eluz2gt1 |
|- ( ( # ` V ) e. ( ZZ>= ` 2 ) -> 1 < ( # ` V ) ) |
38 |
37
|
anim1ci |
|- ( ( ( # ` V ) e. ( ZZ>= ` 2 ) /\ G e. FriendGraph ) -> ( G e. FriendGraph /\ 1 < ( # ` V ) ) ) |
39 |
1
|
vdgn0frgrv2 |
|- ( ( G e. FriendGraph /\ v e. V ) -> ( 1 < ( # ` V ) -> ( ( VtxDeg ` G ) ` v ) =/= 0 ) ) |
40 |
39
|
impancom |
|- ( ( G e. FriendGraph /\ 1 < ( # ` V ) ) -> ( v e. V -> ( ( VtxDeg ` G ) ` v ) =/= 0 ) ) |
41 |
40
|
ralrimiv |
|- ( ( G e. FriendGraph /\ 1 < ( # ` V ) ) -> A. v e. V ( ( VtxDeg ` G ) ` v ) =/= 0 ) |
42 |
|
eqeq2 |
|- ( K = 0 -> ( ( ( VtxDeg ` G ) ` v ) = K <-> ( ( VtxDeg ` G ) ` v ) = 0 ) ) |
43 |
42
|
ralbidv |
|- ( K = 0 -> ( A. v e. V ( ( VtxDeg ` G ) ` v ) = K <-> A. v e. V ( ( VtxDeg ` G ) ` v ) = 0 ) ) |
44 |
|
r19.26 |
|- ( A. v e. V ( ( ( VtxDeg ` G ) ` v ) = 0 /\ ( ( VtxDeg ` G ) ` v ) =/= 0 ) <-> ( A. v e. V ( ( VtxDeg ` G ) ` v ) = 0 /\ A. v e. V ( ( VtxDeg ` G ) ` v ) =/= 0 ) ) |
45 |
|
nne |
|- ( -. ( ( VtxDeg ` G ) ` v ) =/= 0 <-> ( ( VtxDeg ` G ) ` v ) = 0 ) |
46 |
45
|
bicomi |
|- ( ( ( VtxDeg ` G ) ` v ) = 0 <-> -. ( ( VtxDeg ` G ) ` v ) =/= 0 ) |
47 |
46
|
anbi1i |
|- ( ( ( ( VtxDeg ` G ) ` v ) = 0 /\ ( ( VtxDeg ` G ) ` v ) =/= 0 ) <-> ( -. ( ( VtxDeg ` G ) ` v ) =/= 0 /\ ( ( VtxDeg ` G ) ` v ) =/= 0 ) ) |
48 |
|
ancom |
|- ( ( -. ( ( VtxDeg ` G ) ` v ) =/= 0 /\ ( ( VtxDeg ` G ) ` v ) =/= 0 ) <-> ( ( ( VtxDeg ` G ) ` v ) =/= 0 /\ -. ( ( VtxDeg ` G ) ` v ) =/= 0 ) ) |
49 |
|
pm3.24 |
|- -. ( ( ( VtxDeg ` G ) ` v ) =/= 0 /\ -. ( ( VtxDeg ` G ) ` v ) =/= 0 ) |
50 |
49
|
bifal |
|- ( ( ( ( VtxDeg ` G ) ` v ) =/= 0 /\ -. ( ( VtxDeg ` G ) ` v ) =/= 0 ) <-> F. ) |
51 |
47 48 50
|
3bitri |
|- ( ( ( ( VtxDeg ` G ) ` v ) = 0 /\ ( ( VtxDeg ` G ) ` v ) =/= 0 ) <-> F. ) |
52 |
51
|
ralbii |
|- ( A. v e. V ( ( ( VtxDeg ` G ) ` v ) = 0 /\ ( ( VtxDeg ` G ) ` v ) =/= 0 ) <-> A. v e. V F. ) |
53 |
|
r19.3rzv |
|- ( V =/= (/) -> ( F. <-> A. v e. V F. ) ) |
54 |
|
falim |
|- ( F. -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) |
55 |
53 54
|
syl6bir |
|- ( V =/= (/) -> ( A. v e. V F. -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) |
56 |
55
|
adantl |
|- ( ( V e. Fin /\ V =/= (/) ) -> ( A. v e. V F. -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) |
57 |
56
|
com12 |
|- ( A. v e. V F. -> ( ( V e. Fin /\ V =/= (/) ) -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) |
58 |
52 57
|
sylbi |
|- ( A. v e. V ( ( ( VtxDeg ` G ) ` v ) = 0 /\ ( ( VtxDeg ` G ) ` v ) =/= 0 ) -> ( ( V e. Fin /\ V =/= (/) ) -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) |
59 |
44 58
|
sylbir |
|- ( ( A. v e. V ( ( VtxDeg ` G ) ` v ) = 0 /\ A. v e. V ( ( VtxDeg ` G ) ` v ) =/= 0 ) -> ( ( V e. Fin /\ V =/= (/) ) -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) |
60 |
59
|
ex |
|- ( A. v e. V ( ( VtxDeg ` G ) ` v ) = 0 -> ( A. v e. V ( ( VtxDeg ` G ) ` v ) =/= 0 -> ( ( V e. Fin /\ V =/= (/) ) -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) |
61 |
43 60
|
syl6bi |
|- ( K = 0 -> ( A. v e. V ( ( VtxDeg ` G ) ` v ) = K -> ( A. v e. V ( ( VtxDeg ` G ) ` v ) =/= 0 -> ( ( V e. Fin /\ V =/= (/) ) -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) ) |
62 |
61
|
com4t |
|- ( A. v e. V ( ( VtxDeg ` G ) ` v ) =/= 0 -> ( ( V e. Fin /\ V =/= (/) ) -> ( K = 0 -> ( A. v e. V ( ( VtxDeg ` G ) ` v ) = K -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) ) |
63 |
38 41 62
|
3syl |
|- ( ( ( # ` V ) e. ( ZZ>= ` 2 ) /\ G e. FriendGraph ) -> ( ( V e. Fin /\ V =/= (/) ) -> ( K = 0 -> ( A. v e. V ( ( VtxDeg ` G ) ` v ) = K -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) ) |
64 |
63
|
ex |
|- ( ( # ` V ) e. ( ZZ>= ` 2 ) -> ( G e. FriendGraph -> ( ( V e. Fin /\ V =/= (/) ) -> ( K = 0 -> ( A. v e. V ( ( VtxDeg ` G ) ` v ) = K -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) ) ) |
65 |
64
|
com25 |
|- ( ( # ` V ) e. ( ZZ>= ` 2 ) -> ( A. v e. V ( ( VtxDeg ` G ) ` v ) = K -> ( ( V e. Fin /\ V =/= (/) ) -> ( K = 0 -> ( G e. FriendGraph -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) ) ) |
66 |
65
|
adantl |
|- ( ( ( -. ( # ` V ) = 3 /\ -. ( # ` V ) = 2 ) /\ ( # ` V ) e. ( ZZ>= ` 2 ) ) -> ( A. v e. V ( ( VtxDeg ` G ) ` v ) = K -> ( ( V e. Fin /\ V =/= (/) ) -> ( K = 0 -> ( G e. FriendGraph -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) ) ) |
67 |
66
|
com15 |
|- ( G e. FriendGraph -> ( A. v e. V ( ( VtxDeg ` G ) ` v ) = K -> ( ( V e. Fin /\ V =/= (/) ) -> ( K = 0 -> ( ( ( -. ( # ` V ) = 3 /\ -. ( # ` V ) = 2 ) /\ ( # ` V ) e. ( ZZ>= ` 2 ) ) -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) ) ) |
68 |
67
|
com12 |
|- ( A. v e. V ( ( VtxDeg ` G ) ` v ) = K -> ( G e. FriendGraph -> ( ( V e. Fin /\ V =/= (/) ) -> ( K = 0 -> ( ( ( -. ( # ` V ) = 3 /\ -. ( # ` V ) = 2 ) /\ ( # ` V ) e. ( ZZ>= ` 2 ) ) -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) ) ) |
69 |
68
|
3ad2ant3 |
|- ( ( G e. USGraph /\ K e. NN0* /\ A. v e. V ( ( VtxDeg ` G ) ` v ) = K ) -> ( G e. FriendGraph -> ( ( V e. Fin /\ V =/= (/) ) -> ( K = 0 -> ( ( ( -. ( # ` V ) = 3 /\ -. ( # ` V ) = 2 ) /\ ( # ` V ) e. ( ZZ>= ` 2 ) ) -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) ) ) |
70 |
36 69
|
syl |
|- ( G RegUSGraph K -> ( G e. FriendGraph -> ( ( V e. Fin /\ V =/= (/) ) -> ( K = 0 -> ( ( ( -. ( # ` V ) = 3 /\ -. ( # ` V ) = 2 ) /\ ( # ` V ) e. ( ZZ>= ` 2 ) ) -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) ) ) |
71 |
70
|
impcom |
|- ( ( G e. FriendGraph /\ G RegUSGraph K ) -> ( ( V e. Fin /\ V =/= (/) ) -> ( K = 0 -> ( ( ( -. ( # ` V ) = 3 /\ -. ( # ` V ) = 2 ) /\ ( # ` V ) e. ( ZZ>= ` 2 ) ) -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) ) |
72 |
71
|
impcom |
|- ( ( ( V e. Fin /\ V =/= (/) ) /\ ( G e. FriendGraph /\ G RegUSGraph K ) ) -> ( K = 0 -> ( ( ( -. ( # ` V ) = 3 /\ -. ( # ` V ) = 2 ) /\ ( # ` V ) e. ( ZZ>= ` 2 ) ) -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) |
73 |
1
|
frrusgrord |
|- ( ( V e. Fin /\ V =/= (/) ) -> ( ( G e. FriendGraph /\ G RegUSGraph K ) -> ( # ` V ) = ( ( K x. ( K - 1 ) ) + 1 ) ) ) |
74 |
73
|
imp |
|- ( ( ( V e. Fin /\ V =/= (/) ) /\ ( G e. FriendGraph /\ G RegUSGraph K ) ) -> ( # ` V ) = ( ( K x. ( K - 1 ) ) + 1 ) ) |
75 |
|
id |
|- ( K = 2 -> K = 2 ) |
76 |
|
oveq1 |
|- ( K = 2 -> ( K - 1 ) = ( 2 - 1 ) ) |
77 |
75 76
|
oveq12d |
|- ( K = 2 -> ( K x. ( K - 1 ) ) = ( 2 x. ( 2 - 1 ) ) ) |
78 |
77
|
oveq1d |
|- ( K = 2 -> ( ( K x. ( K - 1 ) ) + 1 ) = ( ( 2 x. ( 2 - 1 ) ) + 1 ) ) |
79 |
|
2m1e1 |
|- ( 2 - 1 ) = 1 |
80 |
79
|
oveq2i |
|- ( 2 x. ( 2 - 1 ) ) = ( 2 x. 1 ) |
81 |
|
2t1e2 |
|- ( 2 x. 1 ) = 2 |
82 |
80 81
|
eqtri |
|- ( 2 x. ( 2 - 1 ) ) = 2 |
83 |
82
|
oveq1i |
|- ( ( 2 x. ( 2 - 1 ) ) + 1 ) = ( 2 + 1 ) |
84 |
|
2p1e3 |
|- ( 2 + 1 ) = 3 |
85 |
83 84
|
eqtri |
|- ( ( 2 x. ( 2 - 1 ) ) + 1 ) = 3 |
86 |
78 85
|
eqtrdi |
|- ( K = 2 -> ( ( K x. ( K - 1 ) ) + 1 ) = 3 ) |
87 |
86
|
eqeq2d |
|- ( K = 2 -> ( ( # ` V ) = ( ( K x. ( K - 1 ) ) + 1 ) <-> ( # ` V ) = 3 ) ) |
88 |
|
pm2.21 |
|- ( -. ( # ` V ) = 3 -> ( ( # ` V ) = 3 -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) |
89 |
88
|
ad2antrr |
|- ( ( ( -. ( # ` V ) = 3 /\ -. ( # ` V ) = 2 ) /\ ( # ` V ) e. ( ZZ>= ` 2 ) ) -> ( ( # ` V ) = 3 -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) |
90 |
89
|
com12 |
|- ( ( # ` V ) = 3 -> ( ( ( -. ( # ` V ) = 3 /\ -. ( # ` V ) = 2 ) /\ ( # ` V ) e. ( ZZ>= ` 2 ) ) -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) |
91 |
87 90
|
syl6bi |
|- ( K = 2 -> ( ( # ` V ) = ( ( K x. ( K - 1 ) ) + 1 ) -> ( ( ( -. ( # ` V ) = 3 /\ -. ( # ` V ) = 2 ) /\ ( # ` V ) e. ( ZZ>= ` 2 ) ) -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) |
92 |
74 91
|
syl5com |
|- ( ( ( V e. Fin /\ V =/= (/) ) /\ ( G e. FriendGraph /\ G RegUSGraph K ) ) -> ( K = 2 -> ( ( ( -. ( # ` V ) = 3 /\ -. ( # ` V ) = 2 ) /\ ( # ` V ) e. ( ZZ>= ` 2 ) ) -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) |
93 |
1
|
frgrreg |
|- ( ( V e. Fin /\ V =/= (/) ) -> ( ( G e. FriendGraph /\ G RegUSGraph K ) -> ( K = 0 \/ K = 2 ) ) ) |
94 |
93
|
imp |
|- ( ( ( V e. Fin /\ V =/= (/) ) /\ ( G e. FriendGraph /\ G RegUSGraph K ) ) -> ( K = 0 \/ K = 2 ) ) |
95 |
72 92 94
|
mpjaod |
|- ( ( ( V e. Fin /\ V =/= (/) ) /\ ( G e. FriendGraph /\ G RegUSGraph K ) ) -> ( ( ( -. ( # ` V ) = 3 /\ -. ( # ` V ) = 2 ) /\ ( # ` V ) e. ( ZZ>= ` 2 ) ) -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) |
96 |
95
|
exp32 |
|- ( ( V e. Fin /\ V =/= (/) ) -> ( G e. FriendGraph -> ( G RegUSGraph K -> ( ( ( -. ( # ` V ) = 3 /\ -. ( # ` V ) = 2 ) /\ ( # ` V ) e. ( ZZ>= ` 2 ) ) -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) ) |
97 |
96
|
com34 |
|- ( ( V e. Fin /\ V =/= (/) ) -> ( G e. FriendGraph -> ( ( ( -. ( # ` V ) = 3 /\ -. ( # ` V ) = 2 ) /\ ( # ` V ) e. ( ZZ>= ` 2 ) ) -> ( G RegUSGraph K -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) ) |
98 |
97
|
com23 |
|- ( ( V e. Fin /\ V =/= (/) ) -> ( ( ( -. ( # ` V ) = 3 /\ -. ( # ` V ) = 2 ) /\ ( # ` V ) e. ( ZZ>= ` 2 ) ) -> ( G e. FriendGraph -> ( G RegUSGraph K -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) ) |
99 |
98
|
exp4c |
|- ( ( V e. Fin /\ V =/= (/) ) -> ( -. ( # ` V ) = 3 -> ( -. ( # ` V ) = 2 -> ( ( # ` V ) e. ( ZZ>= ` 2 ) -> ( G e. FriendGraph -> ( G RegUSGraph K -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) ) ) ) |
100 |
99
|
com34 |
|- ( ( V e. Fin /\ V =/= (/) ) -> ( -. ( # ` V ) = 3 -> ( ( # ` V ) e. ( ZZ>= ` 2 ) -> ( -. ( # ` V ) = 2 -> ( G e. FriendGraph -> ( G RegUSGraph K -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) ) ) ) |
101 |
100
|
com25 |
|- ( ( V e. Fin /\ V =/= (/) ) -> ( G e. FriendGraph -> ( ( # ` V ) e. ( ZZ>= ` 2 ) -> ( -. ( # ` V ) = 2 -> ( -. ( # ` V ) = 3 -> ( G RegUSGraph K -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) ) ) ) |
102 |
101
|
ex |
|- ( V e. Fin -> ( V =/= (/) -> ( G e. FriendGraph -> ( ( # ` V ) e. ( ZZ>= ` 2 ) -> ( -. ( # ` V ) = 2 -> ( -. ( # ` V ) = 3 -> ( G RegUSGraph K -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) ) ) ) ) |
103 |
102
|
com23 |
|- ( V e. Fin -> ( G e. FriendGraph -> ( V =/= (/) -> ( ( # ` V ) e. ( ZZ>= ` 2 ) -> ( -. ( # ` V ) = 2 -> ( -. ( # ` V ) = 3 -> ( G RegUSGraph K -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) ) ) ) ) |
104 |
103
|
com14 |
|- ( ( # ` V ) e. ( ZZ>= ` 2 ) -> ( G e. FriendGraph -> ( V =/= (/) -> ( V e. Fin -> ( -. ( # ` V ) = 2 -> ( -. ( # ` V ) = 3 -> ( G RegUSGraph K -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) ) ) ) ) |
105 |
104
|
3imp |
|- ( ( ( # ` V ) e. ( ZZ>= ` 2 ) /\ G e. FriendGraph /\ V =/= (/) ) -> ( V e. Fin -> ( -. ( # ` V ) = 2 -> ( -. ( # ` V ) = 3 -> ( G RegUSGraph K -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) ) ) |
106 |
105
|
com3r |
|- ( -. ( # ` V ) = 2 -> ( ( ( # ` V ) e. ( ZZ>= ` 2 ) /\ G e. FriendGraph /\ V =/= (/) ) -> ( V e. Fin -> ( -. ( # ` V ) = 3 -> ( G RegUSGraph K -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) ) ) |
107 |
34 106
|
pm2.61i |
|- ( ( ( # ` V ) e. ( ZZ>= ` 2 ) /\ G e. FriendGraph /\ V =/= (/) ) -> ( V e. Fin -> ( -. ( # ` V ) = 3 -> ( G RegUSGraph K -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) ) |
108 |
107
|
3exp |
|- ( ( # ` V ) e. ( ZZ>= ` 2 ) -> ( G e. FriendGraph -> ( V =/= (/) -> ( V e. Fin -> ( -. ( # ` V ) = 3 -> ( G RegUSGraph K -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) ) ) ) |
109 |
11 108
|
sylbir |
|- ( ( ( # ` V ) e. NN /\ ( # ` V ) =/= 1 ) -> ( G e. FriendGraph -> ( V =/= (/) -> ( V e. Fin -> ( -. ( # ` V ) = 3 -> ( G RegUSGraph K -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) ) ) ) |
110 |
109
|
ex |
|- ( ( # ` V ) e. NN -> ( ( # ` V ) =/= 1 -> ( G e. FriendGraph -> ( V =/= (/) -> ( V e. Fin -> ( -. ( # ` V ) = 3 -> ( G RegUSGraph K -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) ) ) ) ) |
111 |
10 110
|
syl5bir |
|- ( ( # ` V ) e. NN -> ( -. ( # ` V ) = 1 -> ( G e. FriendGraph -> ( V =/= (/) -> ( V e. Fin -> ( -. ( # ` V ) = 3 -> ( G RegUSGraph K -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) ) ) ) ) |
112 |
111
|
com25 |
|- ( ( # ` V ) e. NN -> ( V e. Fin -> ( G e. FriendGraph -> ( V =/= (/) -> ( -. ( # ` V ) = 1 -> ( -. ( # ` V ) = 3 -> ( G RegUSGraph K -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) ) ) ) ) |
113 |
9 112
|
sylbir |
|- ( ( ( # ` V ) e. NN0 /\ ( # ` V ) =/= 0 ) -> ( V e. Fin -> ( G e. FriendGraph -> ( V =/= (/) -> ( -. ( # ` V ) = 1 -> ( -. ( # ` V ) = 3 -> ( G RegUSGraph K -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) ) ) ) ) |
114 |
113
|
ex |
|- ( ( # ` V ) e. NN0 -> ( ( # ` V ) =/= 0 -> ( V e. Fin -> ( G e. FriendGraph -> ( V =/= (/) -> ( -. ( # ` V ) = 1 -> ( -. ( # ` V ) = 3 -> ( G RegUSGraph K -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) ) ) ) ) ) |
115 |
114
|
impcomd |
|- ( ( # ` V ) e. NN0 -> ( ( V e. Fin /\ ( # ` V ) =/= 0 ) -> ( G e. FriendGraph -> ( V =/= (/) -> ( -. ( # ` V ) = 1 -> ( -. ( # ` V ) = 3 -> ( G RegUSGraph K -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) ) ) ) ) |
116 |
115
|
com14 |
|- ( V =/= (/) -> ( ( V e. Fin /\ ( # ` V ) =/= 0 ) -> ( G e. FriendGraph -> ( ( # ` V ) e. NN0 -> ( -. ( # ` V ) = 1 -> ( -. ( # ` V ) = 3 -> ( G RegUSGraph K -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) ) ) ) ) |
117 |
8 116
|
mpcom |
|- ( ( V e. Fin /\ ( # ` V ) =/= 0 ) -> ( G e. FriendGraph -> ( ( # ` V ) e. NN0 -> ( -. ( # ` V ) = 1 -> ( -. ( # ` V ) = 3 -> ( G RegUSGraph K -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) ) ) ) |
118 |
117
|
ex |
|- ( V e. Fin -> ( ( # ` V ) =/= 0 -> ( G e. FriendGraph -> ( ( # ` V ) e. NN0 -> ( -. ( # ` V ) = 1 -> ( -. ( # ` V ) = 3 -> ( G RegUSGraph K -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) ) ) ) ) |
119 |
118
|
com14 |
|- ( ( # ` V ) e. NN0 -> ( ( # ` V ) =/= 0 -> ( G e. FriendGraph -> ( V e. Fin -> ( -. ( # ` V ) = 1 -> ( -. ( # ` V ) = 3 -> ( G RegUSGraph K -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) ) ) ) ) |
120 |
5 119
|
syl5bir |
|- ( ( # ` V ) e. NN0 -> ( -. ( # ` V ) = 0 -> ( G e. FriendGraph -> ( V e. Fin -> ( -. ( # ` V ) = 1 -> ( -. ( # ` V ) = 3 -> ( G RegUSGraph K -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) ) ) ) ) |
121 |
120
|
com24 |
|- ( ( # ` V ) e. NN0 -> ( V e. Fin -> ( G e. FriendGraph -> ( -. ( # ` V ) = 0 -> ( -. ( # ` V ) = 1 -> ( -. ( # ` V ) = 3 -> ( G RegUSGraph K -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) ) ) ) ) |
122 |
121
|
3imp |
|- ( ( ( # ` V ) e. NN0 /\ V e. Fin /\ G e. FriendGraph ) -> ( -. ( # ` V ) = 0 -> ( -. ( # ` V ) = 1 -> ( -. ( # ` V ) = 3 -> ( G RegUSGraph K -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) ) ) |
123 |
122
|
com25 |
|- ( ( ( # ` V ) e. NN0 /\ V e. Fin /\ G e. FriendGraph ) -> ( G RegUSGraph K -> ( -. ( # ` V ) = 1 -> ( -. ( # ` V ) = 3 -> ( -. ( # ` V ) = 0 -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) ) ) |
124 |
123
|
imp |
|- ( ( ( ( # ` V ) e. NN0 /\ V e. Fin /\ G e. FriendGraph ) /\ G RegUSGraph K ) -> ( -. ( # ` V ) = 1 -> ( -. ( # ` V ) = 3 -> ( -. ( # ` V ) = 0 -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) ) |
125 |
124
|
com14 |
|- ( -. ( # ` V ) = 0 -> ( -. ( # ` V ) = 1 -> ( -. ( # ` V ) = 3 -> ( ( ( ( # ` V ) e. NN0 /\ V e. Fin /\ G e. FriendGraph ) /\ G RegUSGraph K ) -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) ) |
126 |
125
|
3imp |
|- ( ( -. ( # ` V ) = 0 /\ -. ( # ` V ) = 1 /\ -. ( # ` V ) = 3 ) -> ( ( ( ( # ` V ) e. NN0 /\ V e. Fin /\ G e. FriendGraph ) /\ G RegUSGraph K ) -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) |
127 |
4 126
|
sylbi |
|- ( -. ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) -> ( ( ( ( # ` V ) e. NN0 /\ V e. Fin /\ G e. FriendGraph ) /\ G RegUSGraph K ) -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) |
128 |
3 127
|
pm2.61i |
|- ( ( ( ( # ` V ) e. NN0 /\ V e. Fin /\ G e. FriendGraph ) /\ G RegUSGraph K ) -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) |
129 |
128
|
3exp1 |
|- ( ( # ` V ) e. NN0 -> ( V e. Fin -> ( G e. FriendGraph -> ( G RegUSGraph K -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) ) |
130 |
2 129
|
mpcom |
|- ( V e. Fin -> ( G e. FriendGraph -> ( G RegUSGraph K -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) |
131 |
130
|
3imp21 |
|- ( ( G e. FriendGraph /\ V e. Fin /\ G RegUSGraph K ) -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) |