| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							frgrreggt1.v | 
							 |-  V = ( Vtx ` G )  | 
						
						
							| 2 | 
							
								
							 | 
							hashcl | 
							 |-  ( V e. Fin -> ( # ` V ) e. NN0 )  | 
						
						
							| 3 | 
							
								
							 | 
							ax-1 | 
							 |-  ( ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) -> ( ( ( ( # ` V ) e. NN0 /\ V e. Fin /\ G e. FriendGraph ) /\ G RegUSGraph K ) -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) )  | 
						
						
							| 4 | 
							
								
							 | 
							3ioran | 
							 |-  ( -. ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) <-> ( -. ( # ` V ) = 0 /\ -. ( # ` V ) = 1 /\ -. ( # ` V ) = 3 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							df-ne | 
							 |-  ( ( # ` V ) =/= 0 <-> -. ( # ` V ) = 0 )  | 
						
						
							| 6 | 
							
								
							 | 
							hasheq0 | 
							 |-  ( V e. Fin -> ( ( # ` V ) = 0 <-> V = (/) ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							necon3bid | 
							 |-  ( V e. Fin -> ( ( # ` V ) =/= 0 <-> V =/= (/) ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							biimpa | 
							 |-  ( ( V e. Fin /\ ( # ` V ) =/= 0 ) -> V =/= (/) )  | 
						
						
							| 9 | 
							
								
							 | 
							elnnne0 | 
							 |-  ( ( # ` V ) e. NN <-> ( ( # ` V ) e. NN0 /\ ( # ` V ) =/= 0 ) )  | 
						
						
							| 10 | 
							
								
							 | 
							df-ne | 
							 |-  ( ( # ` V ) =/= 1 <-> -. ( # ` V ) = 1 )  | 
						
						
							| 11 | 
							
								
							 | 
							eluz2b3 | 
							 |-  ( ( # ` V ) e. ( ZZ>= ` 2 ) <-> ( ( # ` V ) e. NN /\ ( # ` V ) =/= 1 ) )  | 
						
						
							| 12 | 
							
								
							 | 
							hash2prde | 
							 |-  ( ( V e. Fin /\ ( # ` V ) = 2 ) -> E. a E. b ( a =/= b /\ V = { a , b } ) ) | 
						
						
							| 13 | 
							
								
							 | 
							vex | 
							 |-  a e. _V  | 
						
						
							| 14 | 
							
								13
							 | 
							a1i | 
							 |-  ( a =/= b -> a e. _V )  | 
						
						
							| 15 | 
							
								
							 | 
							vex | 
							 |-  b e. _V  | 
						
						
							| 16 | 
							
								15
							 | 
							a1i | 
							 |-  ( a =/= b -> b e. _V )  | 
						
						
							| 17 | 
							
								
							 | 
							id | 
							 |-  ( a =/= b -> a =/= b )  | 
						
						
							| 18 | 
							
								14 16 17
							 | 
							3jca | 
							 |-  ( a =/= b -> ( a e. _V /\ b e. _V /\ a =/= b ) )  | 
						
						
							| 19 | 
							
								1
							 | 
							eqeq1i | 
							 |-  ( V = { a , b } <-> ( Vtx ` G ) = { a , b } ) | 
						
						
							| 20 | 
							
								19
							 | 
							biimpi | 
							 |-  ( V = { a , b } -> ( Vtx ` G ) = { a , b } ) | 
						
						
							| 21 | 
							
								
							 | 
							nfrgr2v | 
							 |-  ( ( ( a e. _V /\ b e. _V /\ a =/= b ) /\ ( Vtx ` G ) = { a , b } ) -> G e/ FriendGraph ) | 
						
						
							| 22 | 
							
								18 20 21
							 | 
							syl2an | 
							 |-  ( ( a =/= b /\ V = { a , b } ) -> G e/ FriendGraph ) | 
						
						
							| 23 | 
							
								
							 | 
							df-nel | 
							 |-  ( G e/ FriendGraph <-> -. G e. FriendGraph )  | 
						
						
							| 24 | 
							
								22 23
							 | 
							sylib | 
							 |-  ( ( a =/= b /\ V = { a , b } ) -> -. G e. FriendGraph ) | 
						
						
							| 25 | 
							
								24
							 | 
							pm2.21d | 
							 |-  ( ( a =/= b /\ V = { a , b } ) -> ( G e. FriendGraph -> ( V =/= (/) -> ( -. ( # ` V ) = 3 -> ( G RegUSGraph K -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) ) ) | 
						
						
							| 26 | 
							
								25
							 | 
							com23 | 
							 |-  ( ( a =/= b /\ V = { a , b } ) -> ( V =/= (/) -> ( G e. FriendGraph -> ( -. ( # ` V ) = 3 -> ( G RegUSGraph K -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) ) ) | 
						
						
							| 27 | 
							
								26
							 | 
							exlimivv | 
							 |-  ( E. a E. b ( a =/= b /\ V = { a , b } ) -> ( V =/= (/) -> ( G e. FriendGraph -> ( -. ( # ` V ) = 3 -> ( G RegUSGraph K -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) ) ) | 
						
						
							| 28 | 
							
								12 27
							 | 
							syl | 
							 |-  ( ( V e. Fin /\ ( # ` V ) = 2 ) -> ( V =/= (/) -> ( G e. FriendGraph -> ( -. ( # ` V ) = 3 -> ( G RegUSGraph K -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) ) )  | 
						
						
							| 29 | 
							
								28
							 | 
							ex | 
							 |-  ( V e. Fin -> ( ( # ` V ) = 2 -> ( V =/= (/) -> ( G e. FriendGraph -> ( -. ( # ` V ) = 3 -> ( G RegUSGraph K -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) ) ) )  | 
						
						
							| 30 | 
							
								29
							 | 
							com23 | 
							 |-  ( V e. Fin -> ( V =/= (/) -> ( ( # ` V ) = 2 -> ( G e. FriendGraph -> ( -. ( # ` V ) = 3 -> ( G RegUSGraph K -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) ) ) )  | 
						
						
							| 31 | 
							
								30
							 | 
							com14 | 
							 |-  ( G e. FriendGraph -> ( V =/= (/) -> ( ( # ` V ) = 2 -> ( V e. Fin -> ( -. ( # ` V ) = 3 -> ( G RegUSGraph K -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) ) ) )  | 
						
						
							| 32 | 
							
								31
							 | 
							a1i | 
							 |-  ( ( # ` V ) e. ( ZZ>= ` 2 ) -> ( G e. FriendGraph -> ( V =/= (/) -> ( ( # ` V ) = 2 -> ( V e. Fin -> ( -. ( # ` V ) = 3 -> ( G RegUSGraph K -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) ) ) ) )  | 
						
						
							| 33 | 
							
								32
							 | 
							3imp | 
							 |-  ( ( ( # ` V ) e. ( ZZ>= ` 2 ) /\ G e. FriendGraph /\ V =/= (/) ) -> ( ( # ` V ) = 2 -> ( V e. Fin -> ( -. ( # ` V ) = 3 -> ( G RegUSGraph K -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) ) )  | 
						
						
							| 34 | 
							
								33
							 | 
							com12 | 
							 |-  ( ( # ` V ) = 2 -> ( ( ( # ` V ) e. ( ZZ>= ` 2 ) /\ G e. FriendGraph /\ V =/= (/) ) -> ( V e. Fin -> ( -. ( # ` V ) = 3 -> ( G RegUSGraph K -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) ) )  | 
						
						
							| 35 | 
							
								
							 | 
							eqid | 
							 |-  ( VtxDeg ` G ) = ( VtxDeg ` G )  | 
						
						
							| 36 | 
							
								1 35
							 | 
							rusgrprop0 | 
							 |-  ( G RegUSGraph K -> ( G e. USGraph /\ K e. NN0* /\ A. v e. V ( ( VtxDeg ` G ) ` v ) = K ) )  | 
						
						
							| 37 | 
							
								
							 | 
							eluz2gt1 | 
							 |-  ( ( # ` V ) e. ( ZZ>= ` 2 ) -> 1 < ( # ` V ) )  | 
						
						
							| 38 | 
							
								37
							 | 
							anim1ci | 
							 |-  ( ( ( # ` V ) e. ( ZZ>= ` 2 ) /\ G e. FriendGraph ) -> ( G e. FriendGraph /\ 1 < ( # ` V ) ) )  | 
						
						
							| 39 | 
							
								1
							 | 
							vdgn0frgrv2 | 
							 |-  ( ( G e. FriendGraph /\ v e. V ) -> ( 1 < ( # ` V ) -> ( ( VtxDeg ` G ) ` v ) =/= 0 ) )  | 
						
						
							| 40 | 
							
								39
							 | 
							impancom | 
							 |-  ( ( G e. FriendGraph /\ 1 < ( # ` V ) ) -> ( v e. V -> ( ( VtxDeg ` G ) ` v ) =/= 0 ) )  | 
						
						
							| 41 | 
							
								40
							 | 
							ralrimiv | 
							 |-  ( ( G e. FriendGraph /\ 1 < ( # ` V ) ) -> A. v e. V ( ( VtxDeg ` G ) ` v ) =/= 0 )  | 
						
						
							| 42 | 
							
								
							 | 
							eqeq2 | 
							 |-  ( K = 0 -> ( ( ( VtxDeg ` G ) ` v ) = K <-> ( ( VtxDeg ` G ) ` v ) = 0 ) )  | 
						
						
							| 43 | 
							
								42
							 | 
							ralbidv | 
							 |-  ( K = 0 -> ( A. v e. V ( ( VtxDeg ` G ) ` v ) = K <-> A. v e. V ( ( VtxDeg ` G ) ` v ) = 0 ) )  | 
						
						
							| 44 | 
							
								
							 | 
							r19.26 | 
							 |-  ( A. v e. V ( ( ( VtxDeg ` G ) ` v ) = 0 /\ ( ( VtxDeg ` G ) ` v ) =/= 0 ) <-> ( A. v e. V ( ( VtxDeg ` G ) ` v ) = 0 /\ A. v e. V ( ( VtxDeg ` G ) ` v ) =/= 0 ) )  | 
						
						
							| 45 | 
							
								
							 | 
							nne | 
							 |-  ( -. ( ( VtxDeg ` G ) ` v ) =/= 0 <-> ( ( VtxDeg ` G ) ` v ) = 0 )  | 
						
						
							| 46 | 
							
								45
							 | 
							bicomi | 
							 |-  ( ( ( VtxDeg ` G ) ` v ) = 0 <-> -. ( ( VtxDeg ` G ) ` v ) =/= 0 )  | 
						
						
							| 47 | 
							
								46
							 | 
							anbi1i | 
							 |-  ( ( ( ( VtxDeg ` G ) ` v ) = 0 /\ ( ( VtxDeg ` G ) ` v ) =/= 0 ) <-> ( -. ( ( VtxDeg ` G ) ` v ) =/= 0 /\ ( ( VtxDeg ` G ) ` v ) =/= 0 ) )  | 
						
						
							| 48 | 
							
								
							 | 
							ancom | 
							 |-  ( ( -. ( ( VtxDeg ` G ) ` v ) =/= 0 /\ ( ( VtxDeg ` G ) ` v ) =/= 0 ) <-> ( ( ( VtxDeg ` G ) ` v ) =/= 0 /\ -. ( ( VtxDeg ` G ) ` v ) =/= 0 ) )  | 
						
						
							| 49 | 
							
								
							 | 
							pm3.24 | 
							 |-  -. ( ( ( VtxDeg ` G ) ` v ) =/= 0 /\ -. ( ( VtxDeg ` G ) ` v ) =/= 0 )  | 
						
						
							| 50 | 
							
								49
							 | 
							bifal | 
							 |-  ( ( ( ( VtxDeg ` G ) ` v ) =/= 0 /\ -. ( ( VtxDeg ` G ) ` v ) =/= 0 ) <-> F. )  | 
						
						
							| 51 | 
							
								47 48 50
							 | 
							3bitri | 
							 |-  ( ( ( ( VtxDeg ` G ) ` v ) = 0 /\ ( ( VtxDeg ` G ) ` v ) =/= 0 ) <-> F. )  | 
						
						
							| 52 | 
							
								51
							 | 
							ralbii | 
							 |-  ( A. v e. V ( ( ( VtxDeg ` G ) ` v ) = 0 /\ ( ( VtxDeg ` G ) ` v ) =/= 0 ) <-> A. v e. V F. )  | 
						
						
							| 53 | 
							
								
							 | 
							r19.3rzv | 
							 |-  ( V =/= (/) -> ( F. <-> A. v e. V F. ) )  | 
						
						
							| 54 | 
							
								
							 | 
							falim | 
							 |-  ( F. -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) )  | 
						
						
							| 55 | 
							
								53 54
							 | 
							biimtrrdi | 
							 |-  ( V =/= (/) -> ( A. v e. V F. -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) )  | 
						
						
							| 56 | 
							
								55
							 | 
							adantl | 
							 |-  ( ( V e. Fin /\ V =/= (/) ) -> ( A. v e. V F. -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) )  | 
						
						
							| 57 | 
							
								56
							 | 
							com12 | 
							 |-  ( A. v e. V F. -> ( ( V e. Fin /\ V =/= (/) ) -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) )  | 
						
						
							| 58 | 
							
								52 57
							 | 
							sylbi | 
							 |-  ( A. v e. V ( ( ( VtxDeg ` G ) ` v ) = 0 /\ ( ( VtxDeg ` G ) ` v ) =/= 0 ) -> ( ( V e. Fin /\ V =/= (/) ) -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) )  | 
						
						
							| 59 | 
							
								44 58
							 | 
							sylbir | 
							 |-  ( ( A. v e. V ( ( VtxDeg ` G ) ` v ) = 0 /\ A. v e. V ( ( VtxDeg ` G ) ` v ) =/= 0 ) -> ( ( V e. Fin /\ V =/= (/) ) -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) )  | 
						
						
							| 60 | 
							
								59
							 | 
							ex | 
							 |-  ( A. v e. V ( ( VtxDeg ` G ) ` v ) = 0 -> ( A. v e. V ( ( VtxDeg ` G ) ` v ) =/= 0 -> ( ( V e. Fin /\ V =/= (/) ) -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) )  | 
						
						
							| 61 | 
							
								43 60
							 | 
							biimtrdi | 
							 |-  ( K = 0 -> ( A. v e. V ( ( VtxDeg ` G ) ` v ) = K -> ( A. v e. V ( ( VtxDeg ` G ) ` v ) =/= 0 -> ( ( V e. Fin /\ V =/= (/) ) -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) )  | 
						
						
							| 62 | 
							
								61
							 | 
							com4t | 
							 |-  ( A. v e. V ( ( VtxDeg ` G ) ` v ) =/= 0 -> ( ( V e. Fin /\ V =/= (/) ) -> ( K = 0 -> ( A. v e. V ( ( VtxDeg ` G ) ` v ) = K -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) )  | 
						
						
							| 63 | 
							
								38 41 62
							 | 
							3syl | 
							 |-  ( ( ( # ` V ) e. ( ZZ>= ` 2 ) /\ G e. FriendGraph ) -> ( ( V e. Fin /\ V =/= (/) ) -> ( K = 0 -> ( A. v e. V ( ( VtxDeg ` G ) ` v ) = K -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) )  | 
						
						
							| 64 | 
							
								63
							 | 
							ex | 
							 |-  ( ( # ` V ) e. ( ZZ>= ` 2 ) -> ( G e. FriendGraph -> ( ( V e. Fin /\ V =/= (/) ) -> ( K = 0 -> ( A. v e. V ( ( VtxDeg ` G ) ` v ) = K -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) ) )  | 
						
						
							| 65 | 
							
								64
							 | 
							com25 | 
							 |-  ( ( # ` V ) e. ( ZZ>= ` 2 ) -> ( A. v e. V ( ( VtxDeg ` G ) ` v ) = K -> ( ( V e. Fin /\ V =/= (/) ) -> ( K = 0 -> ( G e. FriendGraph -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) ) )  | 
						
						
							| 66 | 
							
								65
							 | 
							adantl | 
							 |-  ( ( ( -. ( # ` V ) = 3 /\ -. ( # ` V ) = 2 ) /\ ( # ` V ) e. ( ZZ>= ` 2 ) ) -> ( A. v e. V ( ( VtxDeg ` G ) ` v ) = K -> ( ( V e. Fin /\ V =/= (/) ) -> ( K = 0 -> ( G e. FriendGraph -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) ) )  | 
						
						
							| 67 | 
							
								66
							 | 
							com15 | 
							 |-  ( G e. FriendGraph -> ( A. v e. V ( ( VtxDeg ` G ) ` v ) = K -> ( ( V e. Fin /\ V =/= (/) ) -> ( K = 0 -> ( ( ( -. ( # ` V ) = 3 /\ -. ( # ` V ) = 2 ) /\ ( # ` V ) e. ( ZZ>= ` 2 ) ) -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) ) )  | 
						
						
							| 68 | 
							
								67
							 | 
							com12 | 
							 |-  ( A. v e. V ( ( VtxDeg ` G ) ` v ) = K -> ( G e. FriendGraph -> ( ( V e. Fin /\ V =/= (/) ) -> ( K = 0 -> ( ( ( -. ( # ` V ) = 3 /\ -. ( # ` V ) = 2 ) /\ ( # ` V ) e. ( ZZ>= ` 2 ) ) -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) ) )  | 
						
						
							| 69 | 
							
								68
							 | 
							3ad2ant3 | 
							 |-  ( ( G e. USGraph /\ K e. NN0* /\ A. v e. V ( ( VtxDeg ` G ) ` v ) = K ) -> ( G e. FriendGraph -> ( ( V e. Fin /\ V =/= (/) ) -> ( K = 0 -> ( ( ( -. ( # ` V ) = 3 /\ -. ( # ` V ) = 2 ) /\ ( # ` V ) e. ( ZZ>= ` 2 ) ) -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) ) )  | 
						
						
							| 70 | 
							
								36 69
							 | 
							syl | 
							 |-  ( G RegUSGraph K -> ( G e. FriendGraph -> ( ( V e. Fin /\ V =/= (/) ) -> ( K = 0 -> ( ( ( -. ( # ` V ) = 3 /\ -. ( # ` V ) = 2 ) /\ ( # ` V ) e. ( ZZ>= ` 2 ) ) -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) ) )  | 
						
						
							| 71 | 
							
								70
							 | 
							impcom | 
							 |-  ( ( G e. FriendGraph /\ G RegUSGraph K ) -> ( ( V e. Fin /\ V =/= (/) ) -> ( K = 0 -> ( ( ( -. ( # ` V ) = 3 /\ -. ( # ` V ) = 2 ) /\ ( # ` V ) e. ( ZZ>= ` 2 ) ) -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) )  | 
						
						
							| 72 | 
							
								71
							 | 
							impcom | 
							 |-  ( ( ( V e. Fin /\ V =/= (/) ) /\ ( G e. FriendGraph /\ G RegUSGraph K ) ) -> ( K = 0 -> ( ( ( -. ( # ` V ) = 3 /\ -. ( # ` V ) = 2 ) /\ ( # ` V ) e. ( ZZ>= ` 2 ) ) -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) )  | 
						
						
							| 73 | 
							
								1
							 | 
							frrusgrord | 
							 |-  ( ( V e. Fin /\ V =/= (/) ) -> ( ( G e. FriendGraph /\ G RegUSGraph K ) -> ( # ` V ) = ( ( K x. ( K - 1 ) ) + 1 ) ) )  | 
						
						
							| 74 | 
							
								73
							 | 
							imp | 
							 |-  ( ( ( V e. Fin /\ V =/= (/) ) /\ ( G e. FriendGraph /\ G RegUSGraph K ) ) -> ( # ` V ) = ( ( K x. ( K - 1 ) ) + 1 ) )  | 
						
						
							| 75 | 
							
								
							 | 
							id | 
							 |-  ( K = 2 -> K = 2 )  | 
						
						
							| 76 | 
							
								
							 | 
							oveq1 | 
							 |-  ( K = 2 -> ( K - 1 ) = ( 2 - 1 ) )  | 
						
						
							| 77 | 
							
								75 76
							 | 
							oveq12d | 
							 |-  ( K = 2 -> ( K x. ( K - 1 ) ) = ( 2 x. ( 2 - 1 ) ) )  | 
						
						
							| 78 | 
							
								77
							 | 
							oveq1d | 
							 |-  ( K = 2 -> ( ( K x. ( K - 1 ) ) + 1 ) = ( ( 2 x. ( 2 - 1 ) ) + 1 ) )  | 
						
						
							| 79 | 
							
								
							 | 
							2m1e1 | 
							 |-  ( 2 - 1 ) = 1  | 
						
						
							| 80 | 
							
								79
							 | 
							oveq2i | 
							 |-  ( 2 x. ( 2 - 1 ) ) = ( 2 x. 1 )  | 
						
						
							| 81 | 
							
								
							 | 
							2t1e2 | 
							 |-  ( 2 x. 1 ) = 2  | 
						
						
							| 82 | 
							
								80 81
							 | 
							eqtri | 
							 |-  ( 2 x. ( 2 - 1 ) ) = 2  | 
						
						
							| 83 | 
							
								82
							 | 
							oveq1i | 
							 |-  ( ( 2 x. ( 2 - 1 ) ) + 1 ) = ( 2 + 1 )  | 
						
						
							| 84 | 
							
								
							 | 
							2p1e3 | 
							 |-  ( 2 + 1 ) = 3  | 
						
						
							| 85 | 
							
								83 84
							 | 
							eqtri | 
							 |-  ( ( 2 x. ( 2 - 1 ) ) + 1 ) = 3  | 
						
						
							| 86 | 
							
								78 85
							 | 
							eqtrdi | 
							 |-  ( K = 2 -> ( ( K x. ( K - 1 ) ) + 1 ) = 3 )  | 
						
						
							| 87 | 
							
								86
							 | 
							eqeq2d | 
							 |-  ( K = 2 -> ( ( # ` V ) = ( ( K x. ( K - 1 ) ) + 1 ) <-> ( # ` V ) = 3 ) )  | 
						
						
							| 88 | 
							
								
							 | 
							pm2.21 | 
							 |-  ( -. ( # ` V ) = 3 -> ( ( # ` V ) = 3 -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) )  | 
						
						
							| 89 | 
							
								88
							 | 
							ad2antrr | 
							 |-  ( ( ( -. ( # ` V ) = 3 /\ -. ( # ` V ) = 2 ) /\ ( # ` V ) e. ( ZZ>= ` 2 ) ) -> ( ( # ` V ) = 3 -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) )  | 
						
						
							| 90 | 
							
								89
							 | 
							com12 | 
							 |-  ( ( # ` V ) = 3 -> ( ( ( -. ( # ` V ) = 3 /\ -. ( # ` V ) = 2 ) /\ ( # ` V ) e. ( ZZ>= ` 2 ) ) -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) )  | 
						
						
							| 91 | 
							
								87 90
							 | 
							biimtrdi | 
							 |-  ( K = 2 -> ( ( # ` V ) = ( ( K x. ( K - 1 ) ) + 1 ) -> ( ( ( -. ( # ` V ) = 3 /\ -. ( # ` V ) = 2 ) /\ ( # ` V ) e. ( ZZ>= ` 2 ) ) -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) )  | 
						
						
							| 92 | 
							
								74 91
							 | 
							syl5com | 
							 |-  ( ( ( V e. Fin /\ V =/= (/) ) /\ ( G e. FriendGraph /\ G RegUSGraph K ) ) -> ( K = 2 -> ( ( ( -. ( # ` V ) = 3 /\ -. ( # ` V ) = 2 ) /\ ( # ` V ) e. ( ZZ>= ` 2 ) ) -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) )  | 
						
						
							| 93 | 
							
								1
							 | 
							frgrreg | 
							 |-  ( ( V e. Fin /\ V =/= (/) ) -> ( ( G e. FriendGraph /\ G RegUSGraph K ) -> ( K = 0 \/ K = 2 ) ) )  | 
						
						
							| 94 | 
							
								93
							 | 
							imp | 
							 |-  ( ( ( V e. Fin /\ V =/= (/) ) /\ ( G e. FriendGraph /\ G RegUSGraph K ) ) -> ( K = 0 \/ K = 2 ) )  | 
						
						
							| 95 | 
							
								72 92 94
							 | 
							mpjaod | 
							 |-  ( ( ( V e. Fin /\ V =/= (/) ) /\ ( G e. FriendGraph /\ G RegUSGraph K ) ) -> ( ( ( -. ( # ` V ) = 3 /\ -. ( # ` V ) = 2 ) /\ ( # ` V ) e. ( ZZ>= ` 2 ) ) -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) )  | 
						
						
							| 96 | 
							
								95
							 | 
							exp32 | 
							 |-  ( ( V e. Fin /\ V =/= (/) ) -> ( G e. FriendGraph -> ( G RegUSGraph K -> ( ( ( -. ( # ` V ) = 3 /\ -. ( # ` V ) = 2 ) /\ ( # ` V ) e. ( ZZ>= ` 2 ) ) -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) )  | 
						
						
							| 97 | 
							
								96
							 | 
							com34 | 
							 |-  ( ( V e. Fin /\ V =/= (/) ) -> ( G e. FriendGraph -> ( ( ( -. ( # ` V ) = 3 /\ -. ( # ` V ) = 2 ) /\ ( # ` V ) e. ( ZZ>= ` 2 ) ) -> ( G RegUSGraph K -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) )  | 
						
						
							| 98 | 
							
								97
							 | 
							com23 | 
							 |-  ( ( V e. Fin /\ V =/= (/) ) -> ( ( ( -. ( # ` V ) = 3 /\ -. ( # ` V ) = 2 ) /\ ( # ` V ) e. ( ZZ>= ` 2 ) ) -> ( G e. FriendGraph -> ( G RegUSGraph K -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) )  | 
						
						
							| 99 | 
							
								98
							 | 
							exp4c | 
							 |-  ( ( V e. Fin /\ V =/= (/) ) -> ( -. ( # ` V ) = 3 -> ( -. ( # ` V ) = 2 -> ( ( # ` V ) e. ( ZZ>= ` 2 ) -> ( G e. FriendGraph -> ( G RegUSGraph K -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) ) ) )  | 
						
						
							| 100 | 
							
								99
							 | 
							com34 | 
							 |-  ( ( V e. Fin /\ V =/= (/) ) -> ( -. ( # ` V ) = 3 -> ( ( # ` V ) e. ( ZZ>= ` 2 ) -> ( -. ( # ` V ) = 2 -> ( G e. FriendGraph -> ( G RegUSGraph K -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) ) ) )  | 
						
						
							| 101 | 
							
								100
							 | 
							com25 | 
							 |-  ( ( V e. Fin /\ V =/= (/) ) -> ( G e. FriendGraph -> ( ( # ` V ) e. ( ZZ>= ` 2 ) -> ( -. ( # ` V ) = 2 -> ( -. ( # ` V ) = 3 -> ( G RegUSGraph K -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) ) ) )  | 
						
						
							| 102 | 
							
								101
							 | 
							ex | 
							 |-  ( V e. Fin -> ( V =/= (/) -> ( G e. FriendGraph -> ( ( # ` V ) e. ( ZZ>= ` 2 ) -> ( -. ( # ` V ) = 2 -> ( -. ( # ` V ) = 3 -> ( G RegUSGraph K -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) ) ) ) )  | 
						
						
							| 103 | 
							
								102
							 | 
							com23 | 
							 |-  ( V e. Fin -> ( G e. FriendGraph -> ( V =/= (/) -> ( ( # ` V ) e. ( ZZ>= ` 2 ) -> ( -. ( # ` V ) = 2 -> ( -. ( # ` V ) = 3 -> ( G RegUSGraph K -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) ) ) ) )  | 
						
						
							| 104 | 
							
								103
							 | 
							com14 | 
							 |-  ( ( # ` V ) e. ( ZZ>= ` 2 ) -> ( G e. FriendGraph -> ( V =/= (/) -> ( V e. Fin -> ( -. ( # ` V ) = 2 -> ( -. ( # ` V ) = 3 -> ( G RegUSGraph K -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) ) ) ) )  | 
						
						
							| 105 | 
							
								104
							 | 
							3imp | 
							 |-  ( ( ( # ` V ) e. ( ZZ>= ` 2 ) /\ G e. FriendGraph /\ V =/= (/) ) -> ( V e. Fin -> ( -. ( # ` V ) = 2 -> ( -. ( # ` V ) = 3 -> ( G RegUSGraph K -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) ) )  | 
						
						
							| 106 | 
							
								105
							 | 
							com3r | 
							 |-  ( -. ( # ` V ) = 2 -> ( ( ( # ` V ) e. ( ZZ>= ` 2 ) /\ G e. FriendGraph /\ V =/= (/) ) -> ( V e. Fin -> ( -. ( # ` V ) = 3 -> ( G RegUSGraph K -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) ) )  | 
						
						
							| 107 | 
							
								34 106
							 | 
							pm2.61i | 
							 |-  ( ( ( # ` V ) e. ( ZZ>= ` 2 ) /\ G e. FriendGraph /\ V =/= (/) ) -> ( V e. Fin -> ( -. ( # ` V ) = 3 -> ( G RegUSGraph K -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) )  | 
						
						
							| 108 | 
							
								107
							 | 
							3exp | 
							 |-  ( ( # ` V ) e. ( ZZ>= ` 2 ) -> ( G e. FriendGraph -> ( V =/= (/) -> ( V e. Fin -> ( -. ( # ` V ) = 3 -> ( G RegUSGraph K -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) ) ) )  | 
						
						
							| 109 | 
							
								11 108
							 | 
							sylbir | 
							 |-  ( ( ( # ` V ) e. NN /\ ( # ` V ) =/= 1 ) -> ( G e. FriendGraph -> ( V =/= (/) -> ( V e. Fin -> ( -. ( # ` V ) = 3 -> ( G RegUSGraph K -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) ) ) )  | 
						
						
							| 110 | 
							
								109
							 | 
							ex | 
							 |-  ( ( # ` V ) e. NN -> ( ( # ` V ) =/= 1 -> ( G e. FriendGraph -> ( V =/= (/) -> ( V e. Fin -> ( -. ( # ` V ) = 3 -> ( G RegUSGraph K -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) ) ) ) )  | 
						
						
							| 111 | 
							
								10 110
							 | 
							biimtrrid | 
							 |-  ( ( # ` V ) e. NN -> ( -. ( # ` V ) = 1 -> ( G e. FriendGraph -> ( V =/= (/) -> ( V e. Fin -> ( -. ( # ` V ) = 3 -> ( G RegUSGraph K -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) ) ) ) )  | 
						
						
							| 112 | 
							
								111
							 | 
							com25 | 
							 |-  ( ( # ` V ) e. NN -> ( V e. Fin -> ( G e. FriendGraph -> ( V =/= (/) -> ( -. ( # ` V ) = 1 -> ( -. ( # ` V ) = 3 -> ( G RegUSGraph K -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) ) ) ) )  | 
						
						
							| 113 | 
							
								9 112
							 | 
							sylbir | 
							 |-  ( ( ( # ` V ) e. NN0 /\ ( # ` V ) =/= 0 ) -> ( V e. Fin -> ( G e. FriendGraph -> ( V =/= (/) -> ( -. ( # ` V ) = 1 -> ( -. ( # ` V ) = 3 -> ( G RegUSGraph K -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) ) ) ) )  | 
						
						
							| 114 | 
							
								113
							 | 
							ex | 
							 |-  ( ( # ` V ) e. NN0 -> ( ( # ` V ) =/= 0 -> ( V e. Fin -> ( G e. FriendGraph -> ( V =/= (/) -> ( -. ( # ` V ) = 1 -> ( -. ( # ` V ) = 3 -> ( G RegUSGraph K -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) ) ) ) ) )  | 
						
						
							| 115 | 
							
								114
							 | 
							impcomd | 
							 |-  ( ( # ` V ) e. NN0 -> ( ( V e. Fin /\ ( # ` V ) =/= 0 ) -> ( G e. FriendGraph -> ( V =/= (/) -> ( -. ( # ` V ) = 1 -> ( -. ( # ` V ) = 3 -> ( G RegUSGraph K -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) ) ) ) )  | 
						
						
							| 116 | 
							
								115
							 | 
							com14 | 
							 |-  ( V =/= (/) -> ( ( V e. Fin /\ ( # ` V ) =/= 0 ) -> ( G e. FriendGraph -> ( ( # ` V ) e. NN0 -> ( -. ( # ` V ) = 1 -> ( -. ( # ` V ) = 3 -> ( G RegUSGraph K -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) ) ) ) )  | 
						
						
							| 117 | 
							
								8 116
							 | 
							mpcom | 
							 |-  ( ( V e. Fin /\ ( # ` V ) =/= 0 ) -> ( G e. FriendGraph -> ( ( # ` V ) e. NN0 -> ( -. ( # ` V ) = 1 -> ( -. ( # ` V ) = 3 -> ( G RegUSGraph K -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) ) ) )  | 
						
						
							| 118 | 
							
								117
							 | 
							ex | 
							 |-  ( V e. Fin -> ( ( # ` V ) =/= 0 -> ( G e. FriendGraph -> ( ( # ` V ) e. NN0 -> ( -. ( # ` V ) = 1 -> ( -. ( # ` V ) = 3 -> ( G RegUSGraph K -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) ) ) ) )  | 
						
						
							| 119 | 
							
								118
							 | 
							com14 | 
							 |-  ( ( # ` V ) e. NN0 -> ( ( # ` V ) =/= 0 -> ( G e. FriendGraph -> ( V e. Fin -> ( -. ( # ` V ) = 1 -> ( -. ( # ` V ) = 3 -> ( G RegUSGraph K -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) ) ) ) )  | 
						
						
							| 120 | 
							
								5 119
							 | 
							biimtrrid | 
							 |-  ( ( # ` V ) e. NN0 -> ( -. ( # ` V ) = 0 -> ( G e. FriendGraph -> ( V e. Fin -> ( -. ( # ` V ) = 1 -> ( -. ( # ` V ) = 3 -> ( G RegUSGraph K -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) ) ) ) )  | 
						
						
							| 121 | 
							
								120
							 | 
							com24 | 
							 |-  ( ( # ` V ) e. NN0 -> ( V e. Fin -> ( G e. FriendGraph -> ( -. ( # ` V ) = 0 -> ( -. ( # ` V ) = 1 -> ( -. ( # ` V ) = 3 -> ( G RegUSGraph K -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) ) ) ) )  | 
						
						
							| 122 | 
							
								121
							 | 
							3imp | 
							 |-  ( ( ( # ` V ) e. NN0 /\ V e. Fin /\ G e. FriendGraph ) -> ( -. ( # ` V ) = 0 -> ( -. ( # ` V ) = 1 -> ( -. ( # ` V ) = 3 -> ( G RegUSGraph K -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) ) )  | 
						
						
							| 123 | 
							
								122
							 | 
							com25 | 
							 |-  ( ( ( # ` V ) e. NN0 /\ V e. Fin /\ G e. FriendGraph ) -> ( G RegUSGraph K -> ( -. ( # ` V ) = 1 -> ( -. ( # ` V ) = 3 -> ( -. ( # ` V ) = 0 -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) ) )  | 
						
						
							| 124 | 
							
								123
							 | 
							imp | 
							 |-  ( ( ( ( # ` V ) e. NN0 /\ V e. Fin /\ G e. FriendGraph ) /\ G RegUSGraph K ) -> ( -. ( # ` V ) = 1 -> ( -. ( # ` V ) = 3 -> ( -. ( # ` V ) = 0 -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) )  | 
						
						
							| 125 | 
							
								124
							 | 
							com14 | 
							 |-  ( -. ( # ` V ) = 0 -> ( -. ( # ` V ) = 1 -> ( -. ( # ` V ) = 3 -> ( ( ( ( # ` V ) e. NN0 /\ V e. Fin /\ G e. FriendGraph ) /\ G RegUSGraph K ) -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) )  | 
						
						
							| 126 | 
							
								125
							 | 
							3imp | 
							 |-  ( ( -. ( # ` V ) = 0 /\ -. ( # ` V ) = 1 /\ -. ( # ` V ) = 3 ) -> ( ( ( ( # ` V ) e. NN0 /\ V e. Fin /\ G e. FriendGraph ) /\ G RegUSGraph K ) -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) )  | 
						
						
							| 127 | 
							
								4 126
							 | 
							sylbi | 
							 |-  ( -. ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) -> ( ( ( ( # ` V ) e. NN0 /\ V e. Fin /\ G e. FriendGraph ) /\ G RegUSGraph K ) -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) )  | 
						
						
							| 128 | 
							
								3 127
							 | 
							pm2.61i | 
							 |-  ( ( ( ( # ` V ) e. NN0 /\ V e. Fin /\ G e. FriendGraph ) /\ G RegUSGraph K ) -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) )  | 
						
						
							| 129 | 
							
								128
							 | 
							3exp1 | 
							 |-  ( ( # ` V ) e. NN0 -> ( V e. Fin -> ( G e. FriendGraph -> ( G RegUSGraph K -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) ) )  | 
						
						
							| 130 | 
							
								2 129
							 | 
							mpcom | 
							 |-  ( V e. Fin -> ( G e. FriendGraph -> ( G RegUSGraph K -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) ) ) )  | 
						
						
							| 131 | 
							
								130
							 | 
							3imp21 | 
							 |-  ( ( G e. FriendGraph /\ V e. Fin /\ G RegUSGraph K ) -> ( ( # ` V ) = 0 \/ ( # ` V ) = 1 \/ ( # ` V ) = 3 ) )  |